

MPJ Express: An Implementation of MPI in

Java
Windows User Guide

18
th
 July 2014

Document Revision Track

Version Updates By

1.0 Initial version document Aamir Shafi

1.1 A new device ‘hybdev’ is added for executing parallel Java

applications exploiting hybrid parallelism.

Aleem Akhtar, Mohsan

Jameel, Aamir Shafi

1.2 A new device ‘native’ is added for executing parallel Java

applications on top of a native MPI library.

Bibrak Qamar, Mohsan

Jameel, Aamir Shafi

1.3 Runtime updated and support for running Java

applications on non-shared file system added. New scripts

for daemons are also added.

Aleem Akhtar, Aamir

Shafi, Mohsan Jameel

1.4 Improved collective primitives are added in MPJ Express.

Some minor bugs are fixed

Aleem Akhtar, Aamir

Shafi, Mohsan Jameel

Table of Contents

1 Introduction .. 5

1.1 Configurations ... 5

1.1.1 Multicore configuration .. 6

1.1.2 Cluster configuration .. 6

2 Getting Started with MPJ Express ... 8

2.1 Pre-requisites .. 8

2. 2 Installing MPJ Express .. 9

2.3 Compiling User Applications ... 13

2.4 Running MPJ Express in the Multi-core Configuration ... 13

2.5 Running MPJ Express in the Cluster Configuration ... 14

2.5.1 Cluster Configuration with niodev ... 14

2.5.2 Cluster Configuration with hybdev .. 15

2.5.4 Cluster Configuration with native device (using a native MPI library) 15

2.6 Advanced Options to mpjrun.bat.. 24

3 MPJ Express Debugging..25

3.1 The mpjrun Script .. 25

3.2 Core Library ... 25

3.3 MPJ Express Daemons (Cluster configuration only) ... 25

4 Known Issues and Limitations ..26

5 Contact and Support ..27

Appendices ...28

Appendix A: Running MPJ Express on non-shared file system ... 28

Appendix B: Running MPJ Express without the runtime (manually) .. 28

Appendix C: Changing protocol limit switch ... 30

Appendix D: MPJ Express Testsuite .. 31

Compiling source code and Testsuite ... 31

Running Testsuite.. 31

Appendix E: Useful scripts for MPJ Daemons ... 32

Appendix F: Switching to Old Collectives .. 34

1 Introduction

MPJ Express is a reference implementation of the mpiJava 1.2 API, which is an MPI-like API

for Java defined by the Java Grande forum. The mpiJava 1.2 API is the Java equivalent of the

MPI 1.1 specification document (http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html).

This release of the MPJ Express software contains the core library and the runtime infrastructure.

The software also contains a comprehensive test suite that is meant to test the functionality of

various communication functions.

MPJ Express is a message passing library that can be used by application developers to execute

their parallel Java applications on compute clusters or network of computers. Compute clusters is

a popular parallel platform, which is extensively used by the High Performance Computing

(HPC) community for large scale computational work. MPJ Express is essentially a middleware

that supports communication between individual processors of clusters. The programming model

followed by MPJ Express is Single Program Multiple Data (SPMD).

Although MPJ Express is designed for distributed memory machines like network of computers

or clusters, it is possible to efficiently execute parallel user applications on desktops or laptops

that contain shared memory or multicore processors.

1.1 Configurations

The MPJ Express software can be configured in two ways, as shown in Figure 1. The first

configuration—known as the multicore configuration—is used to execute MPJ Express user

programs on laptops and desktops. The second configuration—known as the cluster

configuration—is used to execute MPJ Express user programs on clusters or network of

computers. The cluster configuration relies on devices for communication. Currently there are

four communication devices for the cluster configuration:

1. Java New I/O (NIO) device known as niodev: niodev is used to execute MPJ Express

user programs on clusters using Ethernet.

2. Myrinet device known as mxdev: mxdev is used to execute MPJ Express user programs on

clusters connected by Myrinet express interconnects. Currently mxdev is not supported

under windows.

3. Hybrid device known as hybdev: hybdev is used to execute MPJ Express user programs on

clusters of multicore computers.

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

4. Native device known as native: native is used to execute MPJ Express user programs on

top of a native MPI library (MPICH, Open MPI or MS-MPI).

Figure 1: MPJ Express configurations

1.1.1 Multicore configuration

The multicore configuration is meant for users who plan to write and execute parallel Java

applications using MPJ Express on their desktops or laptops—typically such hardware contains

shared memory and multicore processors. In this configuration, users can write their message

passing parallel application using MPJ Express and it will be ported automatically on multicore

processors. We envisage that users can first develop applications on their laptops and desktops

using multicore configuration, and then take the same code to distributed memory platforms

including clusters. Also this configuration is preferred for teaching purposes since students can

execute message passing code on their personal laptops and desktops. It might be noted that user

applications stay the same when executing the code in multicore or cluster configuration.

Under the hood, the MPJ Express library starts a single thread to represent an MPI process. The

multicore communication device uses efficient inter-thread mechanism.

1.1.2 Cluster configuration

The cluster configuration is meant for users who plan to execute their parallel Java applications

on distributed memory platforms including clusters or network of computers.

As an example, consider a cluster or network of computers shown in Figure 2. It shows shows

six compute nodes connected to each other via private interconnect. The MPJ Express cluster

configuration will start one MPJ Express process per node, which communicates to each other

using message passing.

Application developers can opt to use either of the four communication devices in the cluster

configuration:

5. Java New I/O (NIO) device driver known as niodev

6. Myrinet device driver known as mxdev

7. Hybrid device driver known as hybdev

8. Native device driver known as native

The Java NIO device driver (also known as niodev) can be used to execute MPJ Express

programs on clusters or network of computers. The niodev device driver uses Ethernet-based

interconnect for message passing. On the other hand, many clusters today are equipped with

high-performance low-latency networks like Myrinet. MPJ Express also provides a

communication device for message passing using Myrinet interconnect—this device is known as

mxdev and is implemented using the Myrinet eXpress (MX) library by Myricom. These

communication drivers can be selected using command line switches.

Modern HPC clusters are mainly equipped with multicore processors (Figure 3). The hybrid

device is meant for users who plan to execute their parallel Java applications on such a cluster of

multicore machines. Hybrid device transparently uses both multicore configuration and cluster

configuration for intra-node communication and cluster configuration (NIO device only) for

inter-node communication, respectively.

Figure 2: MPJ Express Cluster Configuration Targets the Distributed Memory Platforms Including

Clusters and Network of Computers

Figure 3: MPJ Express Hybrid Configuration Targeting Cluster of Multicore Machines

The fourth device—native device—is meant for users who plan to execute their parallel Java

applications using a native MPI implementation for communication. With this device bulk of

messaging logic is offloaded to the underlying MPI library. This is attractive because MPJ

Express can exploit latest features, like support for new interconnects and efficient collective

communication algorithms, of the native MPI library. Under Windows, this device is currently

tested and supported for MS-MPI—as the underlying native MPI library.

2 Getting Started with MPJ Express

This section shows how MPJ Express programs can be executed in the multicore, cluster and

hybrid configuration

2.1 Pre-requisites

• Java 1.6 (stable) or higher (Mandatory).

• Apache ant 1.6.2 or higher (Optional): ant is required for compiling MPJ Express source

code.

• Perl (Optional): MPJ Express needs Perl for compiling source code because some of the

Java code is generated from Perl templates. The build file will generate Java files from

Perl templates if it detects perl on the machine. It is a good idea to install Perl if you want

to do some development with MPJ Express.

• A native MPI library (Optional): Native MPI library such as MS-MPI is required for

running MPJ Express in cluster configuration with native device.

• Visual Studio (Optional): MPJ Express needs Visual Studio to build JNI wrapper library

for the native device.

2. 2 Installing MPJ Express

This section outlines steps to download and install MPJ Express software.

1. Download MPJ Express and unpack it

2. Assuming unpacked 'mpj express' is in 'c:\mpj', Right-click My

ComputerPropertiesAdvanced tabEnvironment Variables and export the following

system variables (user variables are not enough)

a. Set the value of variable MPJ_HOME as c:\mpj [see Fig 4,Fig 5 and Fig 6]

b. Append the value of variable Path as c:\mpj\bin [see Fig 7]

See the snapshots below

Figure 4: Right click on my computer and select Properties

Figure 5: Select Environment Variables to Add/Edit variables

Figure 6: Add MPJ_HOME as new Environment Variable

Figure 7: Append Path variable

3. For windows with Cygwin (assuming „mpj express‟ is in „c:\mpj‟)

 The recommended way to is to set variables as in Windows

 If you want to set variables in cygwin shell

export MPJ_HOME="c:\\mpj"

export PATH=$PATH:"$MPJ_HOME\\bin"

4. Create a new working directory for MPJ Express programs. This document assumes that

the name of this directory is “mpj-user”.

5. Compile the MPJ Express library (Optional): cd %MPJ_HOME%; ant

2.3 Compiling User Applications

This section shows how to compile a simple Hello World parallel Java program.

1. Write Hello World MPJ Express program and save it as HelloWorld.java

2. Compile: javac -cp .;%MPJ_HOME%/lib/mpj.jar HelloWorld.java

2.4 Running MPJ Express in the Multi-core Configuration

This section outlines steps to execute parallel Java programs in the multicore configuration.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3

2. Running HelloWorld

Execute: mpjrun.bat -np 2 HelloWorld

3. Running test cases (Optional) [Test suite is provided with MPJ Express]

a. Compile (Optional): cd %MPJ_HOME%/test; ant

b. Execute: mpjrun.bat -np 2 -jar %MPJ_HOME%/lib/test.jar

import mpi.*;

public class HelloWorld {

public static void main(String args[]) throws Exception {

 MPI.Init(args);

 int me = MPI.COMM_WORLD.Rank();

 int size = MPI.COMM_WORLD.Size();

 System.out.println("Hi from <"+me+">");

 MPI.Finalize();

 }

}

2.5 Running MPJ Express in the Cluster Configuration

This section outlines steps to execute parallel Java programs in the cluster configuration with

three communication device drivers including niodev, hybdev and native.

2.5.1 Cluster Configuration with niodev

This section outlines steps to execute parallel Java programs in the cluster configuration with

niodev communication device driver.

1. Assuming the user has successfully carried out Sections 2.2 and 2.3.

2. Write a machines file stating machines name, IP addresses, or aliases of the nodes where

you wish to execute MPJ Express processes. Save this file as 'machines' in mpj-user

directory. This file is used by scripts like mpjboot, mpjhalt, mpjrun.bat and mpjrun.sh to

find out which machines to contact.

Suppose you want to run a process each on 'machine1' and 'machine2', then your

machines file would be as follows

machine1

machine2

Note that in real world, 'machine1' and 'machine2' would be fully qualified names,

IP addresses or aliases of your machine

3. Start the daemons: mpjdaemon.bat -boot

This should work if %MPJ_HOME%/bin has been successfully added to %PATH% variable. You

will need to run this command on each machine to start daemons. If logging is enabled

then each daemon produces a log file named daemon-<machine_name>.log in

%MPJ_HOME%/logs directory.

4. Running HelloWorld

Execute: mpjrun.bat -np 2 -dev niodev HelloWorld

5. Running test cases (Optional) [Test suite is provided with MPJ Express]

Execute: mpjrun.bat -np 2 –dev niodev -jar %MPJ_HOME%/lib/test.jar

6. Stop the daemons: mpjdaemon.bat -halt

After you are done with executing all the programs, make sure that you halt the daemons

at each machine.

2.5.2 Cluster Configuration with hybdev

This section outlines steps to execute parallel Java programs in the hybrid configuration using

multicore and cluster configurations. Hybrid configuration depends on Multicore configuration

and Cluster configuration. Make sure that document sections 2.4 and 2.5.1 are completed

successfully.

1. Start the daemons: mpjdaemon.bat -boot

2. Running HelloWorld

Execute: mpjrun.bat -np 2 –dev hybdev HelloWorld

3. Running test cases (Optional) [Test suite is provided with MPJ Express]

Execute: mpjrun.bat -np 2 –dev hybdev -jar %MPJ_HOME%/lib/test.jar

4. Stop the daemons: mpjdaemon.bat -halt

2.5.4 Cluster Configuration with native device (using a native MPI library)

This section outlines steps to execute parallel Java programs in the cluster configuration with

native device.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3.

2. Since MPJ Express native device relies on a native MPI it is assumed that the user has

installed and tested the native MPI library. Better to run a simple helloworld like program

to test the native MPI. Currently MPJ Express is only tested on MS-MPI (under

Windows).

By design MPJ Express should work with any native MPI library. If you have a different

native MPI library installed on your system, please feel free to test it and let us know.

3. Compile the JNI wrapper library (Mandatory):

This requires Visual Studio to generate a dynamic library (nativempjdev.dll) to be used

by MPJ Express to interface with the native MPI library. Open Visual Studio and follow

the steps provided below:

a. FileNewProject: Create a Win32 Project with the name of nativempjdev

Figure 15: Create a Win32 Project with the name of nativempjdev

b. Click next set Application type as DLL and in Additional options tick Empty

project finish

Figure 16: Set Application type as DLL and in Additional options tick Empty project

c. Right click on project nativempjdev in the Solution Explorer and go to

properties. Set Additional Include Directories

Figure 17: Set Additional Include Directories

d. Set Additional Library Directories in the Linker

Figure 18: Set Additional Include Directories

e. Set Additional Dependencies (msmpi.lib) in the Linker

f. Right click on „Header Files‟AddExisting Item… to add Header Files

Figure 19: Navigate to Header Files under the solution nativempjdev

g. Browse into %MPJ_HOME%\src\mpjdev\natmpjdev\lib and select the header

files (*.h)

Figure 20: Add header files

a. Right click on „Source Files‟AddExisting Item… to add Source Files

Figure 21: Add source files

b. Right click on nativempjdev Solution and Build. This creates the dynamic library

(nativempjdev.dll)

Figure 22: Build

c. Install the newly created „nativempjdev.dll‟. Copy from your

project\folder\x64\Release (or whatever x32\Release or \x64\Debug etc)

Figure 23: Copy nativempjdev.dll

d. Paste „nativempjdev.dll‟ into %MPJ_HOME%\lib

Figure 24: Paste nativempjdev.dll into %MPJ_HOME%\lib

4. Running HelloWorld

Execute: mpjrun.bat -np 2 –dev native HelloWorld

5. Running test cases (Optional)

a. Compile :

cd “%MPJ_HOME%”/test/nativetest

compile.bat

b. Execute:
cd “%MPJ_HOME%”/test/nativetest

runtest.bat

i. To supply a machine file provide full path in the first argument of this

script: runtest.bat /full/path/to/machinefile

Advanced Options:

Running directly with mpiexec to use options provided by native MPI library

This is for the advanced user who wants to run parallel Java programs using custom

options to the native MPI library.

The mpjrun.bat script provides a wrapper to native mpiexec (mpirun) command. The user

can bypass mpjrun.bat and directly call mpiexec using the following template.

mpiexec -np <number of processes> –machinefile <path\to\file\filename> java –cp

“%MPJ_HOME%”/lib/mpj.jar;. –Djava.library.path=“%MPJ_HOME%”/lib HelloWorld 0 0

native userarg1 userarg2 userarg3

The above template consists of three parts: mpiexec, java and user application. In this

way the user has flexibility to supply three kinds of options:

1. mpiexec: these are supplied to native MPI library bootstrapping framework (a.k.a

mpirun or mpiexec), for example –np and –machinefile

2. java: these are supplied to the JVM for example –cp and –Djava.library.path and

more.

3. user application: these are supplied to the user application for example userarg1

userarg2 userarg3 in the above template. The three arguments 0 0 native following

user application (classname or jar) are reserved for MPJ Express and are to be kept

intact. MPJ Express for conventional reasons searches for device name on argument

index 3 (i.e args[2]).

2.6 Advanced Options to mpjrun.bat

1. JVM arguments (Optional): JVM arguments may be specified to the mpjrun script that

passes these directly to the executing MPJ Express processes. For example, the following

command modifies the JVM heap size:

mpjrun.bat -np 2 -Xms512M -Xmx512M HelloWorld

2. Application Arguments (Optional): Users may pass arguments to their parallel

applications by specifying them after "-jar <jarname>" or "classname" in the mpjrun

script:

a. The user may pass three arguments “a”, “b”, “c” to the application as follows:
mpjrun.bat -np 2 HelloWorld a b c

b. Application arguments can be accessed in the program by calling the String[]

MPI.Init(String[] args) method. The returned array stores user arguments [a,b,c].

String appArgs[] = MPI.Init(args);

3 MPJ Express Debugging

This section shows how to debug various modules of the MPJ Express software. It is possible to

debug MPJ Express on three levels:

1. The mpjrun Script: This script allows bootstrapping MPJ Express programs in cluster of

multicore configuration.

2. Core Library: Internals of the MPJ Express Software

3. MPJ Express Daemons: While running the cluster configuration, daemons execute on

compute nodes and are responsible for starting and stopping MPJ Express processes

when contacted by the mpjrun script.

3.1 The mpjrun Script

To turn ON debugging for the mpjrun script, follow these steps:

1. Edit %MPJ_HOME%/conf/mpjexpress.conf file.

2. Change the value of mpjexpress.mpjrun.loglevel from "OFF" to "DEBUG”.

3. The mpjrun script relevant log file is /current/directory/mpjrun.log file

3.2 Core Library

To turn ON debugging for the core library, follow these steps:

1 Edit %MPJ_HOME%/conf/mpjexpress.conf file

2 Change the value of mpjexpress.mpi.loglevel from "OFF" to "DEBUG"

3 If the total number of MPJ Express processes is two, then the relevant log files will be

%MPJ_HOME%/logs/user_name-mpj-0.log and %MPJ_HOME%/logs/user_name-mpj-1.log for

processes 0 and 1 respectively.

3.3 MPJ Express Daemons (Cluster configuration only)

The MPJ Express daemons running on compute nodes can be debugged using following steps:

1. Edit %MPJ_HOME%/conf/mpjexpress.conf file.

2. Change the value of mpjexpress.mpjdaemon.loglevel from "OFF" to "DEBUG".

3. Now log files can be seen in $MPJ_HOME/logs/daemon-<machine_name>.log file.

4 Known Issues and Limitations

A list of known issues and limitations of the MPJ Express software are listed below.

1. The merge operation is implemented with limited functionality. The processes in local-

group and remote-group *have* to specify 'high' argument. Also, the value specified by

local-group processes should be opposite to remote-group processes.

2. Any message sent with MPI.PACK can only be received by using MPI.PACK as the datatype.

Later, MPI.Unpack(..) can be used to unpack different datatypes

3. Using 'buffered' mode of send with MPI.PACK as the datatype really does not use the

buffer specified by MPI.Buffer_attach(..) method.

4. Cartcomm.Dims_Create(..) is implemented with limited functionality. According to the

MPI specifications, non-zero elements of 'dims' array argument will not be modified by

this method. In this release of MPJ Express, all elements of 'dims' array are modified

without taking into account if they are zero or non-zero.

5. Request.Cancel(..) is not implemented in this release.

6. MPJ applications should not print more than 500 characters in one line. Some users may

use System.out.print(..) to print more than 500 characters. This is not a serious

problem, because printing 100 characters 5 times with System.out.println(..) will have

the same effect as printing 500 characters with one System.out.print(..)

7. Some users may see this exception while trying to start the mpjrun module. This can

happen when the users are trying to run mpjrun.bat script. The reason for this error is

that the mpjrun module cannot contact the daemon and it tries to clean up the resources it

has. In doing so, it tries to delete a file named 'mpjdev.conf' using File.deleteOnExit()

method. This method appears not to work on Windows possibly because of permission

issues.

Exception in thread "main" java.lang.RuntimeException: Another mpjrun module is

already running on this machine

at runtime.starter.MPJRun.(MPJRun.java:135)

at runtime.starter.MPJRun.main(MPJRun.java:925)

This issue can be resolved by deleting mpjdev.conf file. This file would be present in the

directory, where your main class or JAR file is present. So for example, if the users are

trying to run "-jar ../lib/test.jar", then this file would be present in ../lib directory.

8. The MPJ Express infrastructure does not deal with security. The MPJ Express daemons

could be a security concern, as these are Java applications listening on a port to execute

user-code. It is therefore recommended that the daemons run behind a suitably

configured firewall, which only listens to trusted machines. In a normal scenario, these

daemons would be running on the compute-nodes of a cluster, which are not accessible

to outside world. Alternatively, it is also possible to start MPJ Express processes

'manually', which could help avoid runtime daemons. In addition, each MPJ Express

process starts at least one server socket, and thus is assumed to be running on machine

with configured firewall. Most MPI implementations assume firewalls as protection

mechanism from the outside world.

5 Contact and Support

For help and support, join and post on the MPJ Express mailing list

(https://lists.sourceforge.net/lists/listinfo/mpjexpress-users). Alternatively, you may also contact

us directly:

1 Aamir Shafi (aamir.shafi@seecs.edu.pk)

2 Mohsan Jameel (mohsan.jameel@seecs.edu.pk)

3 Bryan Carpenter (bryan.carpenter@port.ac.uk)

4 Muhammad Ansar Javed (muhammad.ansar@seecs.edu.pk)

5 Bibrak Qamar (bibrak.qamar@seecs.edu.pk)

6 Aleem Akhtar (aleem.akhtar@seecs.edu.pk)

https://lists.sourceforge.net/lists/listinfo/mpjexpress-users
mailto:aamir.shafi@seecs.edu.pk
mailto:mohsan.jameel@seecs.edu.pk
mailto:bryan.carpenter@port.ac.uk
muhammad.ansar@seecs.edu.pk
mailto:bibrak.qamar@seecs.edu.pk
mailto:aleem.akhtar@seecs.edu.pk

Appendices

Appendix A: Running MPJ Express on non-shared file system

MPJ Express applications can be executed on both shared file system and non-shared file system.

Steps to run on both file systems are quite similar. Current version of MPJ Express supports

running of MPJ Express applications in cluster mode on non-shared file system with niodev,

hybdev and mxdev devices. Following steps should be performed to execute MPJ Express

applications on non-shared file system:

1. Install MPJ Express on all machines where you want to execute your application. You

can follow section 2.1, 2.2 and 2.3 for setting up environment for MPJ Express on each

machine.

2. Once MPJ Express is installed, use mpjdaemon.bat script (see Appendix D) to boot

daemons on each machine. You will need to manually boot daemons on each machine.

3. Write machines file on your host system from where you want to run your application

and write down machine name, IP addresses, or aliases of the machines where you wish

to execute MPJ Express processes. Make sure daemons are running that those machines.

4. Use –src switch with mpjrun script to enable working of MPJ Express on non-shared file

system. Example commands are given below:

 niodev: mpjrun.bat –np 2 –dev niodev –src HelloWorld

 hybdev: mpjrun.bat –np 2 –dev hybdev –src HelloWorld

Using –src switch will zip all the content of current working directory and will send to all

machines listed in machines file. Since zipping of files is done and then that zipped file is

sent to all machines through TCP so this feature should only be used for smaller projects.

5. Once job is finished you can stop MPJ daemons running at machines.

Appendix B: Running MPJ Express without the runtime (manually)

There are two fundamental ways of running MPJ Express applications. The first, and the

recommended way is using the MPJ Express runtime infrastructure, alternatively the second way

involves the 'manual' start-up of MPJ Express processes. We do not recommend starting

programs manually as normal procedure. This section documents the procedure for manual start-

up, mainly to allow developers the flexibility to create their own initiation mechanisms for MPJ

Express programs. The runmpj.sh script can be considered one example of such a mechanism

1. cd mpj-user

2. This document is assuming mpj-user as the working directory for users. The name mpj-

user itself has no significance.

3. Write a configuration file called 'mpj.conf' as follows.

a. A typical configuration file that would be used to start two MPJ Express processes is

as follows. Note the names 'machine1' and 'machine2' would be replaced by

aliases/fully-qualified-names/ IP-addresses of the machines where you want to start

MPJ Express processes

 # Number of processes
 2

 # Protocol switch limit

 131072

 # Entry in the form of machinename@port@rank@debug_port

 machine1@20000@20001@0@0

 machine2@20000@20001@1@0

b. The lines starting with '#' are comments. The first entry which is a number ('2' above)

represents total number of processes. The second entry, which is again a number

('131072' above) is the protocol switch limit. At this message size, MPJ Express

changes its communication protocol from eager-send to rendezvous. There are a

couple of entries, one for each MPJ Express process, and each in the form of machine

name (OR)IP@READ_PORT@WRITE_PORT@RANK@DEBUG_PORT. Using

this, the users of MPJ Express can control where each MPJ Express process runs,

what server port it uses, and what should be the rank of each process. The rank

specified here should exactly match the rank argument provided while manually

starting MPJ Express processes (using java command). When the users decide to run

their code using mpjrun, this file is generated programmatically.

c. Sample configuration files can be found in %MPJ_HOME%/conf directory. If you wish to

start MPJ processes on localhost, see %MPJ_HOME%/conf/local2.conf file.

d. Each MPJ process uses two ports. Thus, do not use consecutive ports if you are

trying to execute multiple MPJ Express processes on same node. A sample file for

running two MPJ Express processes on same machine would be

Number of processes

2

Protocol switch limit

131072

Entry in the form of

machinename@read_port@write_port@rank@debug_port

localhost@20000@20001@0@0

localhost@20002@20003@1@0

4. Running your MPJ Express program.

a. Running class files

For all the machines listed in mpj.conf, login to each Windows machine, change

directory to %MPJ_HOME%

 java -cp .;%MPJ_HOME%/lib/mpj.jar World <rank> mpj.conf niodev

The <rank> argument should be 0 for process 0 and 1 for process 1. This should

match to what has been written in configuration file (mpj.conf). Check the entry

format in the configuration file to be sure of the rank

b. Running JAR files

 For all the machines listed in mpj.conf, login to each Windows or Linux machine

 java -jar hello.jar <rank> mpj.conf niodev

 The <rank> argument should be 0 for process 0 and 1 for process 1. This should

match to what has been written in configuration file (mpj.conf). Check the entry

format in the configuration file to be sure of the rank.

Appendix C: Changing protocol limit switch

MPJ Express uses two communication protocols: the first is 'eager-send', which is used for

transferring small messages. The other protocol is rendezvous protocol useful for transferring

large messages. The default protocol switch limit is 128 KBytes. This can be changed prior to

execution in following ways depending on whether you are running processes manually or using

the runtime.

1. Running MPJ Express applications manually (without using runtime): The users may

edit configuration file (for e.g. %MPJ_HOME%/conf/mpj2.conf) to change protocol switch

limit. Look at the comments in this configuration file. The second entry, which should be

131072 if you have not changed it, represents protocol switch limit

2. Running MPJ Express applications with the runtime: Use -psl <val> switch to change

the protocol switch limit

Appendix D: MPJ Express Testsuite

MPJ Express contains a comprehensive test suite to test the functionality of almost every MPI

function. This test suite consists mainly of mpiJava test cases, MPJ JGF benchmarks, and MPJ

microbenchmarks. The mpiJava test cases were originally developed by IBM and later translated

to Java. As this software follows the API of mpiJava, these test cases can be used with a little

modification. MPJ JGF benchmarks are developed and maintained by EPCC at the University of

Edingburgh. MPJ Express is redistributing these benchmarks as part of its test suite. The original

copyrights and license remain intact as can be seen in source-files of these benchmarks in

$MPJ_HOME/test/jgf_mpj_benchmarks. Further details about these benchmarks can be seen

here. MPJ Express also redistributes micro-benchmarks developed by Guillermo Taboada.

Further details about these benchmarks can be obtained here

Compiling source code and Testsuite

1. Compiling MPJ Express source code

a. Being in %MPJ_HOME% directory, execute ant

 Produces mpj.jar, daemon.jar, and starter.jar in lib directory

2. Compiling MPJ Express test-code

a. cd test; ant This produces test.jar in lib directory.

Running Testsuite

The suite is located in %MPJ_HOME%/tests directory. The test cases have been changed from their

original versions, in order to automate testing. TestSuite.java is the main class that calls each of

the test case present in this directory. The build.xml file present in test directory, compiles all test

cases, and places test.jar into the lib directory. By default, JGF MPJ benchmarks and MPJ micro-

benchmarks are disabled. Edit %MPJ_HOME%/test/TestSuite.java to uncomment these tests and

execute them. Note, after changing TestSuite.java, you will have to recompile the testsuite by

executing 'ant' in test directory.

1. cd mpj-user

With Runtime

1. Write a machines file

2. mpjrun.bat -np 2 -jar %MPJ_HOME%/lib/test.jar

http://www.epcc.ed.ac.uk/
http://www.epcc.ed.ac.uk/
http://www.epcc.ed.ac.uk/javagrande/mpj.html
http://www.des.udc.es/~gltaboada/
http://www.des.udc.es/~gltaboada/micro-bench/index.html

Without Runtime

1. Write a configuration file called 'mpj.conf'. Further details about writing configuration

file and its format can be found here

a. Start the tests

 For all the machines listed in mpj.conf, login to each Windows or Linux machine, type,

 java -jar %MPJ_HOME%/lib/test.jar <rank> mpj.conf niodev

The <rank> argument should be 0 for process 0 and 1 for process 1. This should match to

what has been written in configuration file (mpj.conf). Check the entry format in the

configuration file to be sure of the rank.

Appendix E: Useful scripts for MPJ Daemons

Following new scripts have been added in MPJ Express to check status of daemons or clean

daemons. Details of each script are outlined below:

mpjboot <machines_file>

This command will boot MPJ Express daemons at compute nodes specified in machines file.

mpjhalt <machines_file>

This command will halt MPJ Express daemons at compute nodes specified in machines file.

mpjstatus <machines_file>

This command will display current status of MPJ Express daemons at compute nodes specified

in machines file.

mpjclean <machines_file>

This command will clean all java process at compute nodes specified in machines file.

mpjinfo <machines_file>

This command will display all java process at compute nodes specified in machines file.

mpjdaemon <query> <hostnames>

This command takes one of the following queries and will perform respective operation on

specified hosts

-boot: start MPJ Express daemons

-halt: stop MPJ Express daemons

-status: display current status of MPJ Express daemons

-clean: clean all java process

-info: display all java process

For example, this command will boot daemons at localhost.

And this command will halt daemons at two hosts

Mpjdaemon command can be used to directly perform daemon operations without specifying

machines file. Default value for hostname is set as localhost.

mpjdaemon.bat <query>

This command is for Windows Operating System and will perform respective operation on

localhost only. Following operations are available with this command.

-boot: start MPJ Express daemons

-halt: stop MPJ Express daemons

-status: display current status of MPJ Express daemons

For example to boot/start daemons, following command will be used

Or to halt/stop daemons, following command will be used

Note that mpjdaemon.bat only work for localhost.

Appendix F: Switching to Old Collectives

MPJ Express supports running of parallel Java applications using two types of collective

primitives. Old collectives are implemented using linear algorithms and were used in earlier

versions (0.42 and previous) of MPJ Express. Improved collectives are implemented using

Minimum Spanning Tree (MST) and Bucket (BKT) Algorithms. In current version of MPJ

Express, new collectives are used by default. To switch back to old collectives follow these

steps:

1. Edit $MPJ_HOME/conf/mpjexpress.conf file.

2. Change the value of mpjexpress.mpi.old.collectives from "false" to "true".

3. Old collectives will be used in next launch of MPJ Express job.

