
A Status Report: Early Experiences with the implementation

of a Message Passing System using Java NIO

Mark A. Baker, Hong Ong, Aamir Shafi
6th October 2004

Abstract

Since its release in 1996, Java has become a popular software development

language. The reasons for its popularity can be attributed to the easy-to-use

syntax, its portability, the extensive set libraries, and the support of object-

oriented features like data hiding and polymorphism. One of the main

drawbacks of Java was the blocking I/O package, but the situation has

improved with the addition of the Java NIO package that adds scalable and

non-blocking I/O to the language. The DSG is implementing a Java message

passing system based on Java NIO package that runs on heterogeneous

environment. In this report we discuss and evaluate our reference

implementation, known as MPJ.

Table of Contents

Abstract ...1
List of Figures...5
1 Introduction ..7

1.1 Project Objectives..9
1.2 Report Outline ..9

2 Project Motivation..10
2.1 Introduction...10
2.2 Java Message Passing...10
2.3 Benefits of the Java Programming Language ...11
2.3.1 Portability ...11
2.3.2 JIT Compilers..12
2.3.3 An Object Oriented Language ...12
2.3.4 The Java New I/O Package ...12
2.3.4.1 Selectors and SocketChannels ...13
2.3.4.2 The Buffering API..14
2.3.5 The Improved Performance Provided by Java I/O..17
2.3.6 Summary...20

3 Background and Review..21
3.1 Introduction...21
3.1.1 Using Remote Method Invocation (RMI) ...21
3.1.2 Using the JNI ..22
3.1.3 Using Sockets ...22
3.2 Related Projects...23
3.2.1 Past Projects ..23
3.2.1.1 JavaMPI...23
3.2.1.2 MPIJ ...24
3.2.1.3 JMPI ...24
3.2.1.4 jmpi ..25
3.2.1.5 JMPI ...26
3.2.1.6 JUMP and PJMPI..27
3.2.1.7 JMPF ..27
3.2.1.8 JMPP ..28
3.2.1.9 PJMPI...29
3.2.1.10 MPJava..30
3.2.1.11 CCJ ..31
3.2.2 Present Projects (Active Projects) ..31
3.2.2.1 M-JavaMPI..31
3.2.2.2 mpiJava ...32
3.2.2.3 MPP ...34
3.2.3 Summary...34

4 MPJ Design ..35
4.1 Introduction...35
4.2 Design Goals ...35
4.3 Generic Design..35
4.4 Instantiation of MPJ Design ..36
4.4.1 Infrastructure..37
4.4.2 Messaging API ...38
4.5 Design Constraints ...39
4.6 The Runtime Infrastructure...39

 2

4.6.1 Layer 1 (Authentication)...41
4.6.2 Layer 2 (Dynamic Class Loading) ...41
4.6.3 Layer 3 (Execution of the process)...42
4.7 Summary..42

5 Implementation of MPJ...43
5.1 Introduction...43
5.2 The Implementation of mpjdev ..43
5.2.1 The mpjdev Communication Protocols ..43
5.2.1.1 The Eager-Send Protocol...43
5.2.1.2 The Rendezvous Protocol ...46
5.2.1.3 Shared Memory (Internal process communication)..49
5.2.2 The Buffering API..50
5.2.2.1 Buffer Sections..51
5.2.2.2 The Layout of Buffers..51
5.2.2.3 Packing/Unpacking Methods...54
5.2.2.3.1 Write/Read Methods...55
5.2.2.3.2 Gather and Scatter Methods ..55
5.2.2.3.3 Gather and Scatter Methods for Multi-Strided Regions55
5.2.2.4 Buffer Modes ..56
5.2.3 Binding It All Together ...56
5.2.3.1 The Sending Process..57
5.2.3.2 The Receiving Process...58
5.2.3.3 The Communication Primitives of mpjdev..61
5.3 The MPJ Runtime ...61
5.3.1 Dynamic Class Loading ..64
5.3.2 Security Issues ..65
5.4 Summary..66

6 Performance Evaluation ...68
6.1 Introduction...68
6.2 Test Environment ...68
6.3 The Evaluation of mpjdev ...69
6.3.1 The Point-to-Point Comparison on Remote Linux Nodes69
6.3.1.1 Transfer Time Comparison...69
6.3.1.2 Bandwidth Comparison..71
6.3.2 Point-to-Point Communications on a Single Linux Node......................................72
6.3.2.1 Transfer Time Comparison...72
6.3.2.2 Bandwidth Comparison..73
6.3.3 Protocol Switch limit ...74
6.3.3.1 Transfer Time Graph...74
6.3.3.2 Bandwidth Graph ..75
6.4 The Evaluation of the MPJ Point-to-Point Layer..76
6.4.1 Point-to-Point Comparison on remote nodes of Linux nodes77
6.4.1.1 Transfer time Comparison..77
6.4.1.2 Bandwidth Comparison..78
6.5 Summary..79

7 Conclusion..80
7.1 General summary ...80
7.2 Future Work ..81
7.2.1 Implementing Four Modes of Point-to-Point Communications81
7.2.1.1 Implementing the Collective Communications Layers ..82
7.2.1.2 Support for Multi-dimensional Arrays...82

 3

7.2.1.3 Enhancements to the MPJ API ...83
7.2.1.4 Shared Memory Communications ..83
7.2.2 The Runtime Infrastructure..84
7.2.2.1 Runtime Modules ..84
7.2.2.1.1 The MPJ Daemon ..85
7.2.2.1.2 The MPJ Master ...85
7.2.2.1.3 Initiator Module ..86
7.2.2.2 Installation of the Runtime...86
7.2.2.2.1 Forming a Tree Topology ..87
7.2.3 Operations of the Runtime ...87
7.2.3.1 Execution of the Application..87
7.2.3.2 Debugging the application ...88
7.2.3.3 Profiling and Monitoring the Application ...88
7.2.3.4 Runtime Fault-Tolerance ..88
7.2.4 Application Fault-Tolerance...89
7.2.5 Conclusions ..89

 4

List of Figures

Figure 1: The Shared Memory Paradigm ...7
Figure 2: The Distributed Memory Paradigm ...8
Figure 3: A Thread per I/O Channel at each Process ..13
Figure 4: Single Selector Thread at Each Process ..14
Figure 5: A Direct and an Indirect Buffer...14
Figure 6: A Comparison between Direct and Indirect Buffer Allocation Times.........................15
Figure 7: A Comparison between Direct and Indirect Buffer for copying N bytes....................16
Figure 8: Transfer Time Comparison of Java Versus C (Netpipe benchmarks)..........................19
Figure 9: Bandwidth Comparison of Java Versus C (Netpipe benchmarks)...............................19
Figure 10: The Structure of JMPI ...25
Figure 11: The Structure of jmpi ..25
Figure 12: The Java based Performance Visualization System (JPVS) [37]..................................26
Figure 13: The Architecture of JMPF...28
Figure 14: The Architectural View of JMPP...29
Figure 15: A Layered View of M-JavaMPI ...32
Figure 16: The Layered Structure of MPJ ...36
Figure 17: The Layered MPJ Design Showing Three Devices ...37
Figure 18: The Interaction of Runtime Modules..40
Figure 19: The Design of the Runtime Infrastructure...41
Figure 20: The Eager Send Protocol when a Matching recv() is Posted.44
Figure 21: The Eager Send Protocol when a Matching recv() is not Posted.45
Figure 22: The Circular Memory Buffer. ..45
Figure 23: The Control Message sent by the Sender. ..46
Figure 24: The Format of the Control Message Sent by the Receiver. ..47
Figure 25: The Rendezvous Protocol when the recv() is First Posted. ...48
Figure 26: The Rendezvous Protocol when the recv() Method is not Posted..............................49
Figure 27: Shared Memory Communications..50
Figure 28: The Layout of a Static Buffer [79]..52
Figure 29: The Layout of a Single Section [79]...53
Figure 30: The Sending User Thread...57
Figure 31: The Sending Selector Thread...58
Figure 32: The Receiving User Thread..60
Figure 33: The Receiving Selector Thread ..61
Figure 34: The MPJ Runtime Installed on a Linux Cluster and Two Workstations on LAN

Running Windows...62
Figure 35: The Administrator Installing Daemons on Remote Nodes ...63
Figure 36: The Administrator Adding the Users on Daemon Machines63
Figure 37: MPJ Job Submission to the Remote Nodes ..64
Figure 38: The Dynamic Class Loading..65
Figure 39: SSH-based Authentication ...66
Figure 40: A Transfer time Comparison of mpjdev and the Native mpjdev...............................70
Figure 41: A Bandwidth Comparison of mpjdev and the Native mpjdev...................................71
Figure 42: A Transfer Time Comparison of mpjdev and the Native mpjdev on Localhost73
Figure 43: A Bandwidth Comparison of mpjdev and the Native mpjdev on Localhost73
Figure 44: The Transfer Time of the Eager-send and Rendezvous Protocols..............................75
Figure 45: The Bandwidth of the Eager-send and Rendezvous Protocols...................................76
Figure 46: The Transfer Time for MPJ, mpiJava, and MPICH...77
Figure 47: The Bandwidth of MPI, mpiJava and MPICH ..78
Figure 48: The MPJ Runtime Infrastructure...85

 5

List of Tables

Table 1: The Structure of Messaging API Using mpjdev ...39
Table 2: The Datatypes Supported by a Static Buffer ...54
Table 3: The Datatypes Supported by a Dynamic Buffer...54
Table 4: Buffer Packing/Unpacking Methods ..55
Table 5: The Methods Provided by the mpjdev API...61
Table 6: The DSG Cluster Configuration..68
Table 7: The Software Versions..68

 6

1 Introduction

Cluster computing [1][2] has become a cost effective alternative to traditional

HPC multi-processor systems for applications that have large-scale processing

requirements. Shared memory and distributed memory are the two widely

used programming paradigms for large-scale applications. The shared

memory paradigm, as shown in the Figure 1, is used on hardware, where all

the processors see a global memory space; this medium is the means of

communication between the processors.

Figure 1: The Shared Memory Paradigm

In the distributed memory paradigm, as shown in the Figure 2, each node of

the cluster has its own local memory that essentially means that there is no

support for sharing data among nodes without explicitly passing messages

between processors. On such hardware, message-passing libraries provide the

communication medium between the processors. These libraries make use of

the connecting networks to provide the communication medium and by

sending and receiving messages; applications need to co-operate to solve a

computational problem in parallel. At the programming level, the developer

has to manage the data flow explicitly between the processors that are used.

They have to know how to locate arrays of data, and when to set up the

corresponding communicating calls between nodes participating in a

computation. Further details about the two programming paradigms can be

found in [3].

 7

Figure 2: The Distributed Memory Paradigm

The Message Passing Interface (MPI) [4], first introduced in June 1994, is a

standard for implementing message passing systems, which is used by the

application developers for parallel computing over collection of machines.

The current version of the MPI standard has language bindings for Fortran, C

and C++. Two of the most popular libraries implementing the MPI standard

are MPICH [5] and LAM [6] that support C/Fortran/C++ (LAM only) as the

programming language.

In the recent past, there has been a growing interest in developing a message

passing system in Java, which resulted in a Java binding for MPI [7]. The

current standard and non-standard (according to bindings defined in [7])

implementations primarily follow three approaches. The first approach uses

JNI [9] to invoke routines of the underlying native MPI that acts as the

communication medium. The second approach uses RMI [10], which is the

Java API that allows remote method invocation of distributed objects. The use

of low-level “pure” Java communications based on Java sockets is the third

approach. This is the preferred way to build a Java messaging system as it

achieves better performance because of the use of sockets instead of RMI and

ensures a truly portable system.

 8

Despite various experimental projects that have developed Java message

passing systems in the past, there is currently no single implementation that

follows the API defined in [7], performs comparably well as other C MPI

libraries, and makes use of the features of the Java language. Thus, the

motivation behind this project is to build a pure Java message passing system

that implements the bindings defined in [7], ensures portability, supports

object oriented approach and attains performance comparable to the best

alternative, currently mpiJava [61][63].

1.1 Project Objectives

The objective of this project is to develop a reference implementation of a Java

message passing system that follows the recommended standard API, which

includes a runtime library and an infrastructure that can provide all the

support needed by parallel applications. The system, known as MPJ, has a

messaging API based on MPI and uses Java sockets as its means of inter-

process communications.

1.2 Report Outline

In Chapter 2, we discuss the motivation for this project, which is followed by

a review of related work in Chapter 3. Chapter 4 and 5 discuss the design and

implementation issues of MPJ. Chapter 6 evaluates the performance of MPJ

and we conclude with an outline of potential future work in Chapter 7.

 9

2 Project Motivation

2.1 Introduction

In this chapter, the motivation for developing MPJ is discussed. It starts with

a discussion of some salient features of Java followed by a review of the Java

New I/O package [11] (Java NIO). Java NIO adds scalable and non-blocking

I/O to the Java language, which forms the basis for developing a scalable

message-passing library.

2.2 Java Message Passing

There are two aspects of any language help judge its suitability for High

Performance Computing (HPC). The first is the support for efficient

numerical computing. Java is not best known for its support for this area due

to the limitations imposed by the Java Virtual Machine (JVM). This is the layer

that handles heterogeneity between different hardware and operating

systems, at the cost of high performance numeric support. A detailed

discussion of this area can be found in [12]. The second important

requirement is the support for efficient communication using the underlying

network hardware.

Bearing in mind this requirement, one may ask questions like, how long will a

basic point-to-point message transfer between remote processes take? Also,

how does this compare to the other popular languages, such as C or Fortran?

As shown in Figure 8 and Figure 9, the point-to-point communication

performance of Java is comparable to C. This indicates that a Java message

 10

passing system would be capable of providing the application community

with a tool that allows rapid application development and supports object

oriented programming without compromising the communication

performance. Such a tool would prove useful for teaching and simulation

purposes too, where the motive is to learn and prove ideas without getting

into the complex details of underlying hardware and software.

2.3 Benefits of the Java Programming Language

Since its release in 1996, Java has become an increasingly popular software

development language. The reasons for its popularity can be attributed to its

easy to use syntax, portability, the extensive set of libraries and the support of

object oriented features like data hiding, and polymorphism. This sub-section

discusses the advantages and disadvantages of the Java language in the

context of HPC.

2.3.1 Portability

The most attractive feature of applications written in Java is that they are

portable to any hardware or operating system, provided that there is a JVM

for that system; following Sun’s philosophy for Java of writing once and

running anywhere. Java programs run in the JVM, which handles the

complexity of dealing with the underlying hardware and operating system

characteristics. The contribution of the JVM is significant, keeping in mind

that it allows the new programmers and scientists to focus on issues related to

their application and domain of interest and not on system heterogeneity.

 11

2.3.2 JIT Compilers

The performance of the Java language suffered during its initial years because

the JVM executed the bytecode that is generated by the Java compiler (javac).

An alternative, and the more efficient approach, is to execute the native

machine code as one would with the likes of C and Fortran. The pre-requisite

for this is to convert the bytecode into the native machine code. This is what

JIT (Just In Time) compilers are meant to do. These compilers first convert the

bytecode into the native machine code and later execute the native machine

code. A more detailed discussion on JIT compilers can be found in [13].

2.3.3 An Object Oriented Language

The Java language includes a large set of libraries that can be reused by the

application developers in their parallel applications. It automatically brings

the concept of object oriented programming, which may prove significant in

terms of designing applications. This is complimented by the fact that the

syntax of Java is easy to use for new programmers when compared to other

languages such as C or Fortran. Code type safety is yet another feature that

helps a beginner to avoid syntactic bugs in their code.

2.3.4 The Java New I/O Package

A hindrance in the development of a scalable pure java message-passing

library has been the blocking I/O package of java. In the standard Java I/O

package, a server requires a thread to handle the read and write operations of

each I/O channel. Such a mechanism to handle I/O may become a

performance bottleneck in long running applications or ones having a large

number of processes. Figure 3 shows this problem where all processes are

 12

connected to each other and each process requires a thread to handle an I/O

channel for every connected process. This approach may not scale well given

the large number of nodes in the modern clusters these days.

Figure 3: A Thread per I/O Channel at each Process

In this sub-section, we discuss the salient features of the Java New I/O

package.

2.3.4.1 Selectors and SocketChannels

In Java NIO, there is an abstraction for a socket, called socket channel. These

channels register with a selector, which is normally a separate thread in the

JVM that is responsible for handling all the non-blocking I/O. Whenever there

is something to read from a particular socket channel, the selector generates a

matching read event, which can be handled and does the actual read. This

concept is similar to select() in C, which helps scalable and efficient I/O.

Figure 4 shows how the selectors solves the problem of needing a separate

thread for each I/O channel. The number of channels are the same as in Figure

3, but now the receiving process potentially only needs the selector thread to

handle all I/O channels, unlike Figure 3, where each process needs two

threads to handle two I/O channels.

 13

Figure 4: Single Selector Thread at Each Process

2.3.4.2 The Buffering API

Another useful feature of Java NIO is the buffering API. Here a buffer has the

notion of being either direct or indirect, this concept was first conceived in the

Jaguar project [14]. A direct buffer is a chunk of memory in the operating

system’s address space. It is not subject to garbage collection, as this does not

reside like conventional objects, on the JVM heap. On the other hand, an

indirect buffer is like any Java object that is created on the JVM heap. Direct

and indirect buffers are shown in Figure 5.

JVM JVM

Heap Heap

Operating System Operating System

Direct Buffer

Indirect
Buffer

Memory

Direct Buffer Indirect Buffer

Figure 5: A Direct and an Indirect Buffer

 14

The documentation for the Java NIO [4] buffer API suggests that creation of

direct buffers is costly in terms of creation time. However, it provides faster

I/O as it is managed by the operating system instead of the JVM itself. A

comparison between creating a direct and indirect buffer, and time to copy N

bytes onto a direct/indirect buffer is shown in Figure 6 and Figure 7.

Figure 6: A Comparison between Direct and Indirect Buffer Allocation Times

The graph in Figure 6 shows a plot of the time taken in creating a fixed size

buffer as a function of buffer size. As the documentation suggests the time

taken in creating a direct buffer should be higher than the time taken to create

an indirect buffer of the same size. As we can see in Figure 6, the time taken to

create an indirect buffer actually takes less time until the buffer size reaches

128 Kbytes. Theoretically, the indirect buffer should still take less time, but in

 15

practice it does not, as the time taken is dependant on the garbage collection,

which is taking place in the background. On the other hand, the direct buffer

takes predictable creation time with little variation because these buffers are

not subject to garbage collection.

Figure 7: A Comparison between Direct and Indirect Buffer for copying N

bytes

The graph in Figure 7 shows the time taken for copying N bytes onto the

buffer. It is clear that the direct buffer is taking less time until the message size

reaches 128 Kbytes, and after this point, the difference is negligible. Thus, the

rule of thumb is to use direct buffers in the case where the buffers are reused

frequently in the application. Such re-use would ensure faster I/O and prevent

memory leaks that may occur because the direct buffers are not allocated on

the JVM heap and are not subject to garbage collection. This means that the

 16

JVM requests the underlying operating system to get the memory and it is not

possible for the JVM to check the availability of the memory before requesting

it. Thus the frequent creation of a direct buffer may cause the system to crash

and is not recommended. On the other hand, if there is a need to frequently

create buffers, then the use of indirect buffers is recommended.

The Buffer API has a corresponding buffer class for each of Java’s basic

datatypes that extends the base Buffer class. ByteBuffer is the corresponding

class to byte datatype. The use of this class is recommended for building a

message passing system because it has to support the transfer of all basic

datatypes and Java objects. Java objects can be serialized to byte arrays before

storing them onto the ByteBuffer class. Moreover, the read and write

methods of the SocketChannel class only transfer data to and from the

ByteBuffer class respectively.

The super-class Buffer provides three utility variables, called index, limit, and

capacity. When the buffer is created, limit is undefined, capacity is the

argument provided to the allocate method called for the creation of a buffer,

and index is set to zero. For example, copying four bytes onto the buffer

would set the index to four. To read the bytes copied onto the byte buffer, a

utility method flip() is called, which sets the limit to the current index, and

sets the index to zero. There are other utility methods like clear() and

rewind() too. A detailed discussion of the Buffer API can be found in [16][15].

2.3.5 The Improved Performance Provided by Java I/O

 17

NetPIPE [17] is a network protocol independent performance evaluation tool

originally developed by Ames Laboratory [18]. NetPIPE provides information

about the time required to transmit a given data block of a certain size to its

destination, the maximum attainable throughput by an application, the

maximum throughput for a given data block size, the communication

overhead due to the legacy protocol stacks, and the latency of a

communication protocol associated with a network interface. NetPIPE uses

ping-pong like transfers for each data block. It increases the transfer block size

from a single byte to larger blocks until the transmission time exceeds one

second. Specifically, for each block size c, three measurements are taken for

block sizes c-p bytes, c bytes and c+p bytes, where p is a perturbation

parameter with a default value of three. This allows the examination of block

sizes that are possibly slightly smaller or larger than an internal network

buffer. The Java version of NetPIPE supports only the TCP protocol using the

Java I/O package. For the purpose of our performance evaluation, we

implemented the TCP protocol module using the Java New I/O package. This

driver is used for the comparison shown in Figure 8 and Figure 9.

 18

Figure 8: Transfer Time Comparison of Java Versus C (Netpipe benchmarks)

Figure 9: Bandwidth Comparison of Java Versus C (Netpipe benchmarks)

 19

As can be seen in Figure 8 and Figure 9, the Java NIO driver performs equally

well as the C driver. The latency, which we define as “the time taken in

transmitting a single byte from the sender to the receiver” for both the

drivers, is 62 microseconds. The peak bandwidth achieved by both the drivers

is approximately 90 Mbps. A detailed discussion on the comparison can be

found in [19]. The comparison shown in Figure 8 and Figure 9 provide

evidence to the hypothesis made in Section 1.1 that a message passing system

in Java would potentially provide the same performance as C.

2.3.6 Summary

In this chapter, the motivation for developing a message passing system has

been discussed. Java has come a long way, and the release of the NIO package

has added much-needed functionality for Java developers. Java NIO provides

a scalable non-blocking I/O and a Buffer API that supports the transfer of the

basic data-types as well as the Java objects. The comparison presented in

Figure 8 and Figure 9 show that the Netpipe drivers for Java and C perform

approximately the same. This point-to-point comparison presented so far is a

simple one, and to assume that a message-passing library in Java will perform

as well as C is still in question, but nonetheless it is encouraging to implement

such a system using Java.

 20

3 Background and Review

3.1 Introduction

In the past, there has been a significant amount of effort in developing Java

message passing systems. Most of the systems were experimental and are no

longer supported or in other cases, the software is not available. In this

chapter we first discuss the pros and cons of each of the approaches taken to

develop such message passing systems, and then we categorize each of the

projects as past or present ones. The approaches used to implement a Java

messaging system can be divided into three categories.

3.1.1 Using Remote Method Invocation (RMI)

Remote Method Invocation (RMI) is a Java API that allows the programmers

to invoke methods on distributed remote objects. RMI uses sockets as the

underlying communication medium and is primarily meant for client server

interactions rather than the distributed peer processes. RMI can save a lot of

programming time and effort for the developers of a message passing system,

but is not the best option because of the performance issues associated with

RMI. One of the reasons for these issues includes sending the basic data-types

as objects, because all the arguments to the remote methods should be

serializable. Secondly, at least one RMI registry should be running to locate

distributed objects. The address and port of the RMI registry needs to be

known to all processes that have to query the registry to locate distributed

objects. J. Maassen et al in [20][21] discuss the performance issues associated

with the RMI package in detail.

 21

3.1.2 Using the JNI

The JNI (Java Native Interface) is a Java API that allows programmers to call

C routines from their applications. Often developers of message passing

systems use this package to interface their Java code to an underlying native

MPI implementation. This technique saves a lot of additional programming

and testing efforts but does not result in a portable code, which is the primary

reason for implementing a message-passing system in pure Java. JNI also

introduces an additional copying of the data between the Java and the native

MPI code. This overhead is discussed in detail here [23]. Moreover, using JNI

breaks the programming model of Java because there is no way to ensure

code type safety. It also may lead to memory leaks because in C unlike Java,

the programmer is responsible for allocating and freeing the memory.

3.1.3 Using Sockets

The most appropriate way to implement a Java message-passing library is to

use sockets. This approach is considered to be a low level approach but

ensures a portable and an efficient solution that is an important requirement

of application developers. Java allows access to these sockets through two

packages. The first one is the standard Java I/O package, which does not scale,

as there is no support for non-blocking I/O. The second package is the Java

NIO that has recently been introduced and provides programmers with non-

blocking and scalable I/O.

 22

3.2 Related Projects

In this section we discuss the Java based messaging systems. It was important

to review each of these projects critically in order to learn from them and

experiences they gained in order to avoid reinventing the wheel or the

mistakes that they made. We have divided the projects into current (active)

and past (in-active) sub-sections.

3.2.1 Past Projects

This sub-section discusses the projects that were developed in the past and

are no longer active.

3.2.1.1 JavaMPI

JavaMPI [24][25] developed by University of Westminster [26] was the first

attempt to provide a Java binding to MPI. JavaMPI was based on a set of

wrapper functions to the native MPI implementation using the NMI (Native

Method Interface) that has been replaced with JNI in the later releases of the

JDK (Java Development Kit).

This system made use of a Java-to-C Interface generator (JCI) to produce the

necessary C and Java method declarations files. Using JCI, the system

generates similar files for the native MPI library. The native method declared

Java file generated contained the interface used in the Java parallel

application. The automatic generation of the Java bindings using the native

MPI library resulted in an almost compatible Java binding to the MPI-1

specification. The library came with shell scripts to help start the parallel

 23

processes over the remote hosts. Making use of the JCI tool saved

programming effort but did not result in a portable solution. The source-code

of this system is no longer available.

3.2.1.2 MPIJ

MPIJ [28] developed as part of Distributed Object Group Management

Architecture [27] at Brigham Young University [29], was an implementation

of MPI in Java. MPIJ implemented a large subset of the MPI-1 standard. This

project used RMI as the communication medium, though the primitive data-

types were passed using the native marshalling. This technique allowed

efficient transfer of the primitive data-types as well as Java objects. One of the

interesting features of this library is the applet-based execution of the parallel

processes. This relieves the administrator of the manual installation of the

software. A more useful and realistic approach would have been to allow

remote installation of the software from one machine. The software for this

library is no longer available.

3.2.1.3 JMPI

JMPI [30] was an experimental implementation of MPI developed at the

Architecture and Real-Time Lab at the University of Massachusetts [31]. This

library implemented a large subset of MPI’s functionality. It used RMI as the

communication medium and supports the transfer of Java objects using the

object serialization. This library supported the transfer of multi-dimensional

arrays through the use of Introspection. Recognizing the performance issues

with the RMI, KaRMI [32] has also been tried as the underlying

communication medium. The library had no runtime infrastructure to

 24

support bootstrapping parallel processes on remote hosts. The software for

the project is available at [33]. The architecture of this system is shown in

Figure 10.

Java MPI Application
Message Passing Interface API

Communications Layers
Java Virtual Machine

Operating System

Figure 10: The Structure of JMPI

3.2.1.4 jmpi

jmpi [34] was a pure Java implementation of MPI-1 developed by Kivanc

Dincer at Baskent University [35]. It was built on top of JPVM [36], which is a

library that conforms to the PVM and is implemented in Java using the UDP

sockets. This made jmpi unique in a sense that it was the only MPI library in

Java that uses UDP as the underlying communication protocol, as opposed to

using TCP. The MPI standard does not dictate the underlying communication

protocol.

jmpi implements most of MPI’s functionality, including support for derived

datatypes, virtual topologies, attribute caching, as well as the point-to-point

and the collective communication. A layered view of jmpi is shown in Figure

11. The source-code for this library is no longer available.

Collective Communications
Point-to-Point

Communications
JPVM Communication Layer

Java Virtual Machine
Operating System

Figure 11: The Structure of jmpi

 25

jmpi came with an instrumentation, analysis and visualization tool called

JPVS (Java based Performance Visualization System) that allows application

developers to monitor the progress of their applications and find out the

performance issues, if any. This was the first attempt at providing a profiling

tool for Java based messaging systems. Other tools that have been developed

as part of C MPI libraries for debugging and profiling cannot be used with

Java message passing systems, because these are not portable. An

architectural view of JPVS is shown in Figure 12 taken from [37].

Figure 12: The Java based Performance Visualization System (JPVS) [37]

3.2.1.5 JMPI

According to [38], “JMPI is a commercial effort underway at MPI Software

Technology, Inc. to develop a message-passing framework and parallel

support environment for Java. It aims to build a pure Java version of the MPI-

 26

2 standard specialized for commercial applications”. Nor the software and

neither any paper related to this project is available.

3.2.1.6 JUMP and PJMPI

JUMP and PJMPI [39] were two Java messaging systems developed by the

Distributed and High-Performance Computing (DHPC) [40] at University of

Adelaide [41]. According to [39], it is not always sensible to follow MPI

standards for messaging systems in Java because they were written with

procedural languages like C and Fortran in mind. For this reason, the project

developed two flavours. One was PJMPI that follows the MPI standards. The

other was JUMP, which was build upon Java object oriented features and did

not strictly conform to the MPI standard. One of the interesting features of

these libraries was that they come with a runtime infrastructure that allowed

spawning parallel processes on remote hosts. This runtime infrastructure was

based on RMI, and once the processes were started, the communication may

take place using the sockets or RMI. The software for this project is not

available.

3.2.1.7 JMPF

JMPF [42] was a Java message-passing framework developed by collaboration

between Queensland University of Technology [43] and Centre of

Development of Advanced Computing [44]. This framework was based on

standard Java I/O package and used sockets as the communication medium.

The authors argued in [42] that it was not easy for processes to keep a track of

port and socket information regarding each of the process, thus they had

devised a new abstraction called ports that allowed the management of

 27

communication information like finding the address and the port number

where the other process were listening. According to the MPI standard, the

communicator deals with the complexity of managing the addresses and the

port number, and the application developer has to only know the ranks of the

processes and the total size of the communicator. JMPF did not follow the

MPI standard, in fact was not even MPI-like.

The architecture of the JMPF is shown in Figure 13. The server was the entity

that managed the so-called ports, and the clients got the relevant port

information from the server and then communicated directly with other

clients. The source code for this library is available [45] but this project is no

more active.

Server Client Client

Connecting Network

Figure 13: The Architecture of JMPF

3.2.1.8 JMPP

JMPP [46] was a message-passing package developed by National Chiao-

Tung University [47]. This package was based on RMI and implemented the

most of the MPI standard. The interesting feature of this library was the

layered approach. In the reference implementation, the communication layer

called ADI (Abstract Device Interface) used RMI but could be replaced with

 28

other communication medium like sockets. Another interesting feature of this

library was that it implemented two transfer protocols to support four modes

of communication that are mentioned in the MPI standard. A so-called short

protocol supported the standard and ready modes, whereas a so-called long

protocol supported synchronous and buffered modes of message passing. The

architecture of this library is shown in Figure 14.

MPI Classes
ADI
RMI

Java Virtual Machine
Operating System

Figure 14: The Architectural View of JMPP

3.2.1.9 PJMPI

PJMPI [48] was a pure java implementation of the MPI standard developed at

Shanghai University [49]. This library was based on the standard Java I/O

package. A server socket was started at each of the participating node, which

accepted incoming connections to form a point-to-point connection.

DataInputStream and DataOutputStream were used to access the sockets for

writing and reading respectively. The Java objects were communicated using

the derived datatypes feature of the MPI standard. An interesting feature of

this library was the runtime infrastructure. The library had a daemon called

PJMPI daemon that ran over each of the machine that wished to participate in

the overall execution of the parallel application. The status of the daemon

could be checked visually from the client machine that was used to start up

the process through a GUI called PJMPI control centre. Dynamic class loading

was used to load the classes into the daemon machines JVM for execution.

The software for this project is not available.

 29

3.2.1.10 MPJava

MPJava [50] was a message-passing library that was implemented using the

Java NIO package by The University of Maryland [51]. This package

demonstrated that Java messaging systems based on NIO achieves

performance comparable to that of C or Fortran message passing libraries.

The runtime infrastructure consists of shell scripts that allowed processes to

be started Linux-based nodes.

Figure 1, in [50], shows the ping-pong performance comparison between the

java.io (bytes), java.io (doubles), MPJava and LAM-MPI 6.5.8. It shows that

the LAM-MPI implementation attained greater throughput than MPJava for

message sizes up to about 1000 doubles. For message sizes larger than 7000

doubles, MPJava attained a greater throughput than LAM-MPI. These results

are suspicious because a Java messaging system cannot perform better than a

C message passing system. The reason is that both C and Java use the

underlying operating system TCP stack to communicate over the network,

but Java adds an additional layer, which is the JVM. As a message passing

system developer, we aim to keep the overhead of this additional layer

minimal but it cannot be avoided. The test environment consisted of a cluster

of Pentium III running Red Hat Linux 7.3. The Linux kernel used on the nodes

is not mentioned in the paper, but there are some known performance issues

of LAM-MPI with the Linux kernel 2.2.x. Further details about this can be

found in [52]. The source code of MPJava has not been released publicly.

 30

3.2.1.11 CCJ

CCJ [53] was a MPI-like message-passing library implemented on top of RMI

developed at Vrije Universiteit Amsterdam [54]. This library did not strictly

follow the MPI API in order to make use of the object-oriented features of the

Java language. This library supported the transfer of the Java objects, as well

as the basic data-types. Group communications had been implemented using

the Java’s multi-threading model, where a thread used scatter/gather like

operations to send not only the arrays but also the Java objects to all the other

threads within the same thread group. The library could also use Manta [22],

which uses Myrinet as the underlying networking hardware. The benchmarks

presented in the paper [53] show the overheads incurred using standard RMI.

3.2.2 Present Projects (Active Projects)

In this sub-section, we discuss each of the currently active projects briefly. We

also discuss some of the projects that are using these Java messaging systems.

3.2.2.1 M-JavaMPI

M-JavaMPI [55] is a messaging system developed at The University of Hong

Kong [56] that uses JNI to interact with underlying native MPI library. One of

the important features of this library is that it supports process migration

using the JVMDI (JVM Debug Interface) [57]. Figure 15 shows that the Java

MPI program is compiled into the bytecode, which is modified by the pre-

processing layer to insert state restoration code as the try-catch block. The

Java-MPI API layer provides the necessary MPI functionality. This layer acts

 31

as a client to the messaging layer (Restorable MPI Layer) that is responsible

for delivering messages. The migration layer allows capture and saving of the

execution state for later execution. The migration layer also handles the

reconstruction of the communication channels in case a fault occurs.

Java MPI Program
Pre-Processing Layer

Java-MPI API Java API
Migration Layer

JVMDI

JVM

Restorable MPI Layer

Native MPI

OS

Hardware

Figure 15: A Layered View of M-JavaMPI

The support for process migration is important for many applications because

a minor fault may result in hours of wasted computation. Currently in J2SE

1.5, JVMDI [57] is deprecated in favour of JVMTI (JVM Tool Interface) [58],

which means that JVMDI will be removed from the next major release. This

essentially means that a part of this system will have to be re-written to make

use of the new debugging interface. The source-code for this project is

available [59]. This project has been subsumed into another project G-

JavaMPI, a middleware for the Grid having support for process migration

[60].

3.2.2.2 mpiJava

mpiJava [61] is a Java messaging system that uses JNI to interact with the

underlying native MPI library. The project started in 1997 at NPACI (Syracuse

University [64]), later moved to University of Florida [65] and is currently

 32

being pursued at the Indiana University [66], with one of its collaborators in

the Distributed Systems Group, University of Portsmouth [67]. This project is

not strictly following the MPJ API specification [63], but it is slowly moving

towards the standard.

During the implementation of earlier versions of the software, some conflicts

between the JVM and the underlying MPI implementation were reported but

the situation has improved with the evolution of the JVM. Initial versions of

this software transferred only the primitive data-types, but the current

version supports the transfer of Java object through the automatic

serialization. [62]. mpiJava uses Perl wrapper scripts of the native MPI scripts

to remotely start the execution of the processes on the remote nodes.

More recently, a native mpjdev (Native MPJ device driver) has been written

in order to separate the implementation logics of mpiJava from the point-to-

point and collective communications layers. This essentially means that the

mpjdev driver developed in pure Java can be plugged into the already

developed point-to-point and collective communications layer.

mpiJava has been widely used by the Java developers and HPC community. It

is used as a teaching tool [76], a library that supports the development of

performance measurement and analysis systems of parallel applications [71],

and for simulating parallel applications [74][75]. Some in the community has

found it hard to install [72] and some have provided execution helper scripts

[70] to run it.

 33

3.2.2.3 MPP

MPP [77] is an implementation of a subset of the MPI standard using Java

NIO. This system has been developed at University of Bergen [78] as part of a

larger project called Matrix Toolkits for Java (MTJ). Though MPP is built

using Java NIO, it does not make use of the selectors to perform non-blocking

I/O. In the non-blocking functions, a separate thread is started to handle

communications. On the other hand, it does make use of the buffering API

provided by Java NIO to support the transfer of primary data-types only.

According to [77], MPP achieves 10 Mbytes/s over a 100 Mbps connection,

and over 100 Mbytes/s over 1 Gbps connection. The runtime infrastructure

consists of a shell script that uses SSH utility to start the processes on remote

nodes.

3.2.3 Summary

In this chapter we have reviewed current and past Java message-passing

systems. It is clear that the only real choice for application developers who

want to port/develop their applications in Java is mpiJava. As mpiJava uses

the native MPI as the communication medium, the application developers

cannot benefit fully from the portability of Java. Moreover, JNI has

drawbacks, which restricts the performance of mpiJava.

 34

4 MPJ Design

4.1 Introduction

In this chapter the layered design of MPJ and its runtime are discussed. This

chapter also outlines the design goals and associated issues.

4.2 Design Goals

The high-level design goals of MPJ are:

• Portability,

• Standard Java – we assume no language extensions,

• High-performance,

• A modular architecture, that is layered and has support for pluggable

drivers for specialised devices.

• Support for the object oriented programming paradigm that allows

application developers to program their applications at a higher level of

abstraction.

4.3 Generic Design

MPJ is structured into a layered design to allow incremental development,

and provide the capability to update and swap in/out layers as needed. Figure

16 shows the layered structure of MPJ.

 35

High Level MPJ Collective operations
Process topologies

Base Level MPJ

All point-to-point modes
Groups
Communicators
Datatypes

MPJ Device Level

isend, irecv, waitany, . . .
Physical process ids (no groups)
Contexts and tags (no
communicators)
Byte vector data
Buffer packing/unpacking
JNI Wrapper

Communication medium

Java NIO and Thread APIs
Native MPI
Specialised Hardware Library (For
e.g. VIA communication primitives)

Process Creation and
Monitoring

MPJ service daemon
Java Reflection API to start processes
Dynamic Class loading

Figure 16: The Layered Structure of MPJ

Figure 16 shows a generic layered view of the messaging system. The high

and low-level layers rely on the MPJ Device level for actual communications

and interaction with the underlying networking hardware. In other words,

the MPJ Device level acts as a driver for different networking hardware,

represented by the communication primitives layer that can be Java NIO,

native MPI or some specialised communications library.

4.4 Instantiation of MPJ Design

Figure 17 shows an instantiation of the MPJ structure containing three

different devices.

 36

P o in t to p o in t c o m m u n ic a tio n s

N IO d e v ic e
d riv e r

N a tiv e M P I
d e v ic e d riv e r

V IA d ev ic e
d riv er

C o lle c tiv e C o m m u n ica tio n s

O p era tin g S ys te m (L in u x /W in d o w s e tc .)

H a rd w a re (N IC , M e m o ry e tc)

N a tiv e M P I V IA lib ra ry

N IO p ackag e JN I p ackag e

J a v a V irtu a l M a c h in e (J V M)

JN I p ackag e

M P J A P I

Figure 17: The Layered MPJ Design Showing Three Devices

4.4.1 Infrastructure

The bottom five layers of Figure 17 form the MPJ infrastructure, which is

based on the concept of device drivers that is similar to that of MPICH [5].

MPICH uses various different communication devices, for example, ch_p4 is

the communication device for BSD sockets, on top of which higher-level

operations like point-to-point and collective communications are

implemented. Using this approach, different drivers can be implemented for

different devices, for example Java NIO, Java I/O, VIA (Virtual Interface

Architecture) or native MPI. This also allows switching between various

communication devices at runtime. The Java NIO device driver (hereafter

 37

referred to as “mpjdev”) uses TCP sockets through the Java NIO package as

the communication medium. The native MPI device driver (hereafter referred

to as the “native mpjdev”) uses the JNI package to interact with the native

MPI implementation. The VIA device driver uses the JNI to communicate

with the VIA library. We envisage that in some cases, user will prefer to use

the native mpjdev, which may perform better if there is some specialised

hardware such as Myrinet/Infiniband/VIA.

4.4.2 Messaging API

The top three layers in Figure 17, the MPJ API, collective communications and

point-to-point communications form the messaging API. The high-level

messaging API provides an interface for the application developers to use.

This interface hides all the underlying implementation details from users. The

messaging API consists of the point-to-point communications, collective

communications, and some utilities like communicators, process topologies,

and derived datatypes. Table 1 shows an instantiation of the MPJ structure

using mpjdev as the only communication device.

 38

MPJ Point to Point and Collective communication: This layer manages
communicators, provides virtual topologies, point-to-point and collective
communication operations.

The Java New I/O device driver (mpjdev): mpjdev is implemented using
the New I/O package. This layer is responsible for starting the device,
providing a way for other similar devices to connect to it and connecting to
other devices. This layer gets the configuration information from the
runtime, For example, ports to bind the server socket to, rank of this
processes, ranks of other processes, machine name/IP and ports of other
processes.

Java Virtual Machine and Java libraries: This layer is the Java runtime that
is required to execute Java programs. This layer provides the support for
non-blocking I/O through the Java New I/O package.

Operating System (Linux/Windows)

Table 1: The Structure of Messaging API Using mpjdev

4.5 Design Constraints

A device driver implements a buffer packing/unpacking API because it is not

possible to write the basic datatypes and objects into an open socket. Instead,

the data is first copied onto the buffer and then a reference to this buffer is

passed to the socket. The buffering API supports three types of read and write

methods; write()/read(), scatter()/gather(), and multi-stride scatter

and gather methods. These operations form the basis for supporting gather

and scatter methods at the collective communications layer.

4.6 The Runtime Infrastructure

A runtime infrastructure solves the problem of starting the execution of the

parallel application as multiple processes. There processes may execute over a

cluster of nodes, or workstations present in LAN. Such an infrastructure is

 39

necessary for a messaging system, as it is impossible for the user to login to

each of the participating node, and start the process manually. We have

divided the runtime infrastructure into two modules. The first module is the

initiator module that allows the user to initiate the execution of the parallel

application. The second module is the daemon module, which runs over the

nodes that wish to participate in the overall execution. Figure 18 shows the

interaction between the initiator and the daemon module.

Daemon Module

Initiator Module
mpjrun -np 2 Test

Daemon Module Daemon Module

Figure 18: The Interaction of Runtime Modules

As part of MPJ, we have implemented a secure runtime infrastructure that

allows a user to run the MPJ application over the remote nodes. This portable

infrastructure allows different operating systems running on different

hardware platforms to participate in the overall parallel job.

 40

Execution Server
and I/O handler

Dynamic Class
Loading

Authentication
Module

Execution Client and
I/O handler

Http Server

Authentication
Module

Initiator Daemon

Layer 3

Layer 2

Layer 1

Figure 19: The Design of the Runtime Infrastructure

Figure 19 shows the layered structure of the runtime infrastructure. The

initiator module runs on the node that starts the execution of the application.

The daemon module runs on the nodes that are able to execute the processes.

We discuss each layer of the runtime infrastructure in the sub-sections below.

4.6.1 Layer 1 (Authentication)

The authentication layer resides at the bottom of the runtime infrastructure

because the first and foremost requirement is to authenticate user.

4.6.2 Layer 2 (Dynamic Class Loading)

Once the user has been authenticated, the next layer of the module

downloads the binaries from the user machine so that they may be executed

on the daemon node. We do not assume a shared file system, hence a

dynamic class loading is required that is shown in the layer 2 of Figure 19.

 41

4.6.3 Layer 3 (Execution of the process)

After layer 2 has loaded the binaries onto a node, the daemon executes the

user MPJ job. The standard I/O and error streams are redirected to the user

machine so that user may view any output or errors that the application may

be producing.

4.7 Summary

In this section, the design of MPJ and its runtime infrastructure is discussed.

MPJ has been structured to hide the implementation details from the

application developers. Moreover, the design allows the application

developers to choose amongst various communication devices. It is possible

for other developers to add new communication devices to the MPJ library.

The runtime infrastructure is layered in three main layers that form the basis

of the interaction between the initiator and the daemon modules.

 42

5 Implementation of MPJ

5.1 Introduction

This chapter discusses the implementation of MPJ. This chapter is divided

into two sections that describe the implementation of mpjdev device driver

and the runtime infrastructure.

5.2 The Implementation of mpjdev

The primary functionality provided by the device driver is the

implementation of various communication protocols and buffering that

allows the users to pack and unpack their data to/from the NIO buffers. Two

packages have been implemented as part of the development of the mpjdev

API. One package is mpjdev, which contains a Java NIO device driver, having

a selector thread that assists in the non-blocking I/O. The second package is

mpjbuf, which contains all the classes related to the buffering API for the

mpjdev.

5.2.1 The mpjdev Communication Protocols

The mpjdev device driver encapsulates the protocols used for

communication.

5.2.1.1 The Eager-Send Protocol

 43

The Eager-send protocol is used by the message passing libraries for the

communication of small messages typically less than 128 Kbytes. This

protocol works on the assumption that the receiver has got an unlimited

device level memory where it can store messages. There is no exchange of

control messages before doing the actual data transmission, thus minimizing

the overhead of control messages that may dominate the total communication

time of small messages. Whenever a send method is called, the sender writes

the message data into the socket channel assuming that the receiver will

handle it. At the receiving side, there can be more than one scenario,

depending on whether a matching receive method is posted by the user or

not. If a matching receive method is posted, the message is copied onto the

memory specified by the user (sketched out in Figure 20).

Sender Receiver

2. Send () called.

Message Sent

1. recv() called and user-specified buffer is
available.

3. mpjdev receives the message and copies
it directly to the user specified buffer. The
circular buffer is not used in this scenario.

TIM
E =>

Figure 20: The Eager Send Protocol when a Matching recv() is Posted.

However, if a matching receive is not posted, then the mpjdev device driver

stores the message temporarily in a circular buffer, and copies it to the user

specified memory when, subsequently, the user calls the matching receive

method (sketched out in Figure 21).

 44

Sender Receiver

1. Send () called.

2. Message received by mpjdev, and the
message is temporarily copied onto
circular buffer.

3. recv() called and the message is copied
from the circular buffer onto the user
specified buffer.

Message Sent

start

end

start

end

TIM
E =>

Figure 21: The Eager Send Protocol when a Matching recv() is not Posted.

The large circular buffer is currently a direct buffer. The mpjdev device driver

associates a starting point and an ending point whenever it copies a message

onto the buffer that is later used to read the message again. When the device

encounters the end of the buffer, it starts to copy the message at the start point

of the buffer assuming that first message copied to the buffer has been

transferred to the user specified memory.

start(m1)

end(m1)
start(m2)

a) Initial state b) Message (m1)copied. c) Message (m2)copied.

end(m1)
start(m2)

d) Message(m1) read

end(m2) end(m2)

start(m1)

Figure 22: The Circular Memory Buffer.

 45

5.2.1.2 The Rendezvous Protocol

The rendezvous protocol is used by the message passing libraries for

communication of large messages, typically greater than 128 Kbytes. There is

an exchange of messages between the sender and the receiver before the

actual transmission of the data payload. The overhead of this exchange of

messages is negligible in terms of the overall communication cost.

C
O

N
TR

O
L_

M
ES

SA
G

E_
H

EA
D

ER

int

}

 -24 0 10 100 200

} } } }

int int int int

R
A

N
K

_O
F_

TH
E_

SE
N

D
ER

M
ES

SA
G

_T
A

G

ST
A

TI
C

_B
U

FF
ER

_L
EN

G
TH

D
YN

A
M

IC
_B

U
FF

ER
_L

EN
G

TH

Figure 23: The Control Message sent by the Sender.

 46

in t

}
 -24 0 10

C
O

N
TR

O
L_

M
ES

SA
G

E_
H

EA
D

ER

} }

b y te in t

M
ES

SA
G

_T
A

G

G
O

A
H

EA
D

_S
IG

 (0
 =

>
se

nd
, 1

 =
>

do
nt

 s
en

d)

Figure 24: The Format of the Control Message Sent by the Receiver.

The rendezvous protocol when the sender intends to send a message, it first

sends a control message, see Figure 23 for the format of the control message.

The receiver after receipt of the control message first checks if a matching

receive method is called or not. If it is called, see Figure 25 for exchange of

messages, then the receiver sends a control message back, see Figure 24 for

the format of the control message.

 47

TIM
E =>

Sender Receiver

1. Recv() called by the user.

3. Control message received. The user has
already posted the recv(), so sending
GO_AHEAD_SIGNAL to the sender

GO_AHEAD_SIGNAL

4. Received the GO_AHEAD_SIGNAL and sending
the actual message data now.

2. Send () called, so sending the control
message

Control Message Sent

Actual Message Sent

5. Received the actual message data and copied to
user specified buffer.

Figure 25: The Rendezvous Protocol when the recv() is First Posted.

If the recv() is not posted, see Figure 26 for exchange of messages in this

scenario, then the control message is sent back to the sender when a matching

receive method is posted. A matching receive has to be posted in this protocol

to save the mpjdev memory. When the sender receives the acknowledgement

message back from the receiver, it sends the actual data that is later received

by the receiver.

 48

Sender Receiver

2. Control message received and waiting for
the recv() to be called by the user.

3. recv called by the user.

GO_AHEAD_SIGNAL

5. Received the GO_AHEAD_SIGNAL and sending
the actual message data now.

1. Send () called, so sending the control
message

Control Message Sent

Actual Message Sent

4. Sending GO_AHEAD_SIGNAL

6. Received the actual message data and copied to
user specified buffer.

Figure 26: The Rendezvous Protocol when the recv() Method is not Posted.

5.2.1.3 Shared Memory (Internal process communication)

This protocol is used when a process is sending a message to itself. The ideal

situation for two processes running on the same machine would be to use

shared memory paradigm to pass data. This is not possible in Java where two

JVMs running on the same machine can only send the message to each other

by using sockets and thus the communication cost is dominated by the

bandwidth of memory bus. This is because each of the JVM has its variables

on its heap inaccessible to other JVM instances running on the same

computer. Thus, the shared memory communication is restricted to same

process communication only (one JVM).

 49

JVM (process 0) JVM (process 1)

A single machine

Figure 27: Shared Memory Communications.

5.2.2 The Buffering API

The buffering API allows user to pack/unpack the data to be sent to other

processes. The primary reason for implementing this API is that the sockets

do not directly access the memory and thus are unable to write/read the basic

datatypes. Moreover, without such a buffering API, a message passing system

can become quite complex for the users to manage because of the absence of

pointers and the type safety feature of Java, which does not allow “void *”

such as C. Most of the complex operations, such as communicating objects

and handling gather/scatter operations; used at the higher levels of the

library, are also supported by this buffering API.

A buffer object consists of two data storage structures. The first is a static

buffer, in which the underlying storage primitive is the ByteBuffer class. The

second is a dynamic buffer where a byte array is the storage primitive. The

size of the static buffer is predefined, and can contain only primitive

datatypes. The rationale behind this is that it is possible to calculate the

number of bytes required before copying the data onto the buffer. Whereas on

the other hand, the dynamic buffer is used to copy serialized Java objects, in

 50

which case it is not possible to determine the length of the serialized objects

beforehand. As a convenience to the user, Java basic datatypes may also be

stored in dynamic buffers. According to [79], in general writing to or reading

from a static section of the buffer is much faster than the corresponding

operation on a dynamic section of the buffer. In general, use of a dynamic

buffer is only recommended for short or infrequent message exchanges.

5.2.2.1 Buffer Sections

A message consists of zero or more sections. Each section can hold elements

of the same type, basic datatypes or Java objects. A section consists of a

header, followed by the actual data payload.

To create sections, the buffering API provides utility methods like

putSectionHeader(), which takes as an argument one of the datatypes

(possible datatypes are shown in Table 2 and Table 3) and can only be

invoked when the buffer is in a writeable mode. Once the section header has

been created, then the data can be copied onto the buffer using write()

method if contiguous elements are to placed onto the buffer, or using the

gather()/strGather() methods if non-contiguous elements of Java arrays are

to be copied onto the buffer. To read the section, the user invokes the

getSectionHeader() method when the buffer is in a readable mode, which is

later followed by a series of read(), for contiguous elements of Java array, or

scatter()/strScatter(), for non-contiguous elements of Java array.

5.2.2.2 The Layout of Buffers

 51

The data stored in a static buffer can be represented as big-endian or little-

endian. This is determined by the encoding property of the buffer, which

takes on of the values java.nio.ByteOrder.BIG_ENDIAN or

java.nio.ByteOrder.LITTLE_ENDIAN. The encoding property of a newly

created buffer is determined by the return value of

java.nio.ByteOrder.nativeOrder() method. A developer may change the

format to match the encoding property of the underlying hardware, which

results in efficient numeric representation at the JVM layer. The overall layout

of the static buffer is shown in Figure 28.

Figure 28: The Layout of a Static Buffer [79]

As shown in Figure 28, a message consists of zero or more sections. The

message consists of a message header followed by the data payload. A

padding that can be up to 7 bytes may follow a section if the total length of

the section (header + data) is not a multiple of ALIGNMENT_UNIT, which has

value 8. The general layout of an individual section in the static buffer is

shown in Figure 29.

 52

Figure 29: The Layout of a Single Section [79]

Figure 29 shows that the message header is 8 bytes long. The value of the first

byte defines the elements’ type contained in the section. The possible values

for static and dynamic buffers are listed in Table 2 and Table 3 respectively.

The next three bytes are not currently used, and reserved for possible future

use. The next four bytes contain the number of elements contained in this

section, i.e. the section length. This numerical value is represented according

to the encoding property of the buffer. The size of the header in bytes is

SECTION_OVERHEAD, which has value 8. If the section is static, the header is

followed by the values of the elements, again represented according to the

encoding property of the buffer. If the section is dynamic, the ʺSection dataʺ is

absent from Figure 29 because the data is in the dynamic buffer which is a

byte array. The Java serialization classes (java.io.ObjectOutputStream and

java.io.ObjectInputStream) dictate the format of the dynamic buffer.

 53

Datatype Possible Values

integer mpjbuf.Buffer.INT

byte mpjbuf.Buffer.BYTE

short mpjbuf.Buffer.SHORT

boolean mpjbuf.Buffer.BOOLEAN

long mpjbuf.Buffer.LONG

float mpjbuf.Buffer.FLOAT

double mpjbuf.Buffer.DOUBLE

Table 2: The Datatypes Supported by a Static Buffer

Datatype Possible Values

Java Objects mpjbuf.Buffer.OBJECT

Bytes on dynamic buffer mpjbuf.Buffer.BYTE_DYNAMIC

Shorts on dynamic buffer mpjbuf.Buffer.SHORT_DYNAMIC

Booleans on dynamic buffer mpjbuf.Buffer.BOOLEAN_DYNAMIC

Integers on dynamic buffer mpjbuf.Buffer.INT_DYNAMIC

Longs on dynamic buffer mpjbuf.Buffer.LONG_DYNAMIC

Floats on dynamic buffer mpjbuf.Buffer.FLOAT_DYNAMIC

Doubles on dynamic buffer mpjbuf.Buffer. DOUBLE_DYNAMIC

Table 3: The Datatypes Supported by a Dynamic Buffer

5.2.2.3 Packing/Unpacking Methods

There are three basic kinds of method for writing/reading data to/from a

buffer section and for reading data from a buffer section. These methods are

summarized in Table 4, and followed by an explanation of them.

 54

Packing/Unpacking
Methods

Section writing methods Section reading methods

1. Write/Read Methods write(type[] src,
 int srcOff,
 int numEls)

read(type[] dest,
 int dstOff,
 int numEls)

2. Gather/Scatter Methods gather(type[] src,
 int numEls,
 int idxOff,
 int[] indexes)

scatter(type[] dest,
 int numEls,
 int idxOff,
 int[] indexes)

3. Gather and Scatter
Methods for multi-strided
regions

strGather(type[] src,
 int srcOff,
 int rank,
 int exts,
 int srs,
 int[] shape)

strScatter(type[] dest,
 int dstOff,
 int rank,
 int exts,
 int srs,
 int[] shape)

Table 4: Buffer Packing/Unpacking Methods

5.2.2.3.1 Write/Read Methods

The methods, shown in row 1 of Table 4, are used to write and read

contiguous Java arrays of all the primitive datatypes including object arrays.

The write method copies numEls values of the src array starting from srcOff

onto the buffer. Conversely, the read method copies numEls values from the

buffer and writes them onto dest array starting from srcOff.

5.2.2.3.2 Gather and Scatter Methods

The methods, shown in row 2 of Table 4, are used to write and read non-

contiguous Java arrays of all the primitive datatypes including object arrays.

The gather method copies numEls values of the src array starting from

indexes[idxOff] to indexes[idxOff+numEls] onto the buffer. Conversely, the

scatter method copies numEls values from the buffer and writes them onto

dest array starting from indexes[idxOff] to indexes[idxOff+numEls].

5.2.2.3.3 Gather and Scatter Methods for Multi-Strided Regions

 55

The methods, shown in row 3 of Table 4, likewise transfer data from or to a

subset of elements of a Java array, but in these cases the selected sub-set is a

ʺmulti-strided regionʺ of the Java array. The specification is fairly complex,

but these are useful operations for dealing with multi-dimensional data

structures, which occur often in scientific programming. More details about

these methods can be found in [79].

5.2.2.4 Buffer Modes

A buffer object has two modes, write and read. The write mode allows the

user to copy the data onto the buffer, and the read mode allows the user to

read the data from the buffer. It is not permitted to read from the buffer when

it is in writeable mode. Similarly, it is not permitted to write to a buffer when

it is readable mode.

The newly created buffer is always in a writeable mode. During this mode,

the user may copy the data to the buffer and then call commit(), which puts

the buffer in a readable mode. The user can now read the data from the buffer

and put it back in writeable mode for any possible future use that is done by

calling the clear().

5.2.3 Binding It All Together

Having described the communication protocols and the buffering API, we

now describe how the device drivers use the various communication

protocols.

 56

5.2.3.1 The Sending Process

The sending process is always initiated by a user thread, which means calling

either the blocking or non-blocking send methods. Whenever the method is

called, the send method first checks whether the destination process is equal

to the current process. If it is, then the user thread uses the shared memory

protocol to copy the message to itself. In case the destination process is not

equal to the current process, then the message length is compared against the

protocol switch limit, which is provided by the user to the device through the

runtime configuration information. If the message length is smaller than the

protocol switch limit, then the message is sent using the eager send protocol.

If the length is equal or greater than the protocol switch limit, then the

message is sent through the rendezvous protocol. As part of the rendezvous

protocol, the sender first sends a control message to the receiver. The sender

data flow of user thread for the rendezvous protocol in shown in Figure 30.

Is destination rank equal to
curent process rank YES

Do shared
memory send

N
O

Eager-Send

R
endezvous

Send the
control

message to the
receiver

What protocol to use ?
(depends on message length)

Send message
(eager send

protocol)

Figure 30: The Sending User Thread

 57

The selector thread for the sending process is responsible for receiving the

control message back from the receiver. If the receiver sends a

GO_AHEAD_SIGNAL, as a response to the control message sent by the sender user

thread, then the sender goes on to send the actual data, see Figure 31 for

details.

Is it a co n tro l m essa g e
? N O

 YES

Y E S

S en d th e
m essag e

(ren d ezv o u s
p ro to co l)

N
O

Is it
G O _AH E AD _S IG N AL

fro m th e rec e iv er?

S ee th e rece iver s id e flo w
ch arts ...

S ee th e rece iver s id e
flo w c h arts ...

Figure 31: The Sending Selector Thread

5.2.3.2 The Receiving Process

In contrast to the sending process the receiving process may be initiated by

the user thread, by posting a recv() call, or by the selector thread, which may

receive a control message from the sender (rendezvous protocol) or receive

the actual message data from the sender (eager-send protocol).

 58

Figure 32 shows the data flowchart of the user thread at the receiving side.

When the recv() method is called, the device first checks whether the source

specified is equal to the current process rank. If it is, then the receiver uses

shared memory protocol to receive the message. If it is not, then it first checks

the queue (recv() queue) containing information about the recv() calls,

whether the selector thread has already received a control message related to

this particular recv(). If this queue does not contain this recv() call, then the

user thread posts a recv() call and adds an entry into the recv() queue. If this

queue contains a request related to this recv(), it means that the selector

thread has already received the control message (for the rendezvous protocol)

or has already received the actual message (for the eager send protocol). The

protocol switch limit is compared to the message length to decide which

protocol to use. If the message length suggests eager send, then the user

thread receives the message, otherwise, a control message GO_AHEAD_SIGNAL is

sent to the sender as a green signal to transmit the actual message data.

 59

Is source rank equal to
my rank ? YES

Do shared
memory recv

N
O

YES

What protocol to use ?
(depends on the length

of the message) Eager-Send

Recv
message

R
endezvous

Send the
GO_AHEAD_

SIGNAL to
sender

N
O

Post the recv
request in the

recvQueue.

Control Message related
to recvrequest present

in recv queue ?

Figure 32: The Receiving User Thread

Figure 33 show the data flowechart of the selector thread at the receiving end.

When selector thread receives a message, it first determines whether this is

control message or not. If it is not a control message, then the sender has sent

the actual data (rendezvous protocol) that is received by the receiver. This is

the next step to the GO_AHEAD_SIGNAL sent to the sender by the user thread; see

Figure 32 for details. If this is a control message, then it is checked to see if

there is a matching recv() call present in the recv() queue, which is posted

by a user thread or not. If there is a request then it means that the user has

already posted the recv(), so a GO_AHEAD_SIGNAL is sent to the sender to give

permission to send the actual data. If there is no matching recv() request

found in the recv() queue, then it is posted and can be later checked by the

user thread when the user posts the recv() method.

 60

Is it a control message
? NO

Receive the
message

(rendezvous
protocol)

YES

YES

Has a corresponding
recv request posted by

the user thread and
present in recvQueue ?

 YES

Send the
GO_AHEAD_

SIGNAL
N

O

Post a recv
request in the

recvQueue and
wait for the user

to call recv()

N
O

Is it a control message
at the receiver side ?

See the sender side flow
charts ...

Figure 33: The Receiving Selector Thread

5.2.3.3 The Communication Primitives of mpjdev

Table 5 shows the method provided by the mpjdev API.

Modes Send Recv
Blocking send(mpjbuf.Buffer buffer,

 int dest,
 int tag)

Statusrecv(mpjbuf.Buffer buffer,
 int src,
 int tag)

Non-
blocking

Req isend(mpjbuf.Buffer buffer,
 int dest,
 int tag)

Req send(mpjbuf.Buffer buffer,
 int src,
 int tag)

Table 5: The Methods Provided by the mpjdev API

5.3 The MPJ Runtime

Currently, we are implementing a runtime to support the execution of the

processes on remote hosts, in the first instance over a LAN. The key idea

behind implementing a runtime is not to compromise the portability, which is

 61

the basic motive to develop a message passing system. The implementation is

in early stage and currently addresses how to start the execution of the

parallel application. The runtime is divided into parts, an initiator module

that starts the execution of the application, and a daemon that runs spawns

the application on the remote nodes. Figure 34 shows an initiator module

running on the head node of the cluster, and daemons running on the

compute nodes and the two workstations present in the LAN. The initiator

module starts the execution of the application by contacting the daemons.

Head Node

1 2 3

4 5 N

Daemon

Daemon Daemon

DaemonDaemon

Workstation

Workstation

Daemon

Daemon

Initiator Module

Figure 34: The MPJ Runtime Installed on a Linux Cluster and Two

Workstations on LAN Running Windows

The runtime works as follows,

1. First of all, the administrator installs, configures, and starts the daemons on

hosts, which may execute MPJ processes. The daemon is set up as a Windows

service or in inetd under UNIX.

 62

Admin machine (the admin
needs an account on all

machine where he wants to
start the daemon)

Windows-1

Linux-2

Linux-1

Start the daemon using 'ssh'

Start the daemon using 'ssh'
Start the daemon using 'psexec'

Figure 35: The Administrator Installing Daemons on Remote Nodes

2. The next step is to add users to this set-up. Only the administrator should be

allowed to do this. The administrator adds the public keys of all the users

under question to all the machines running the daemons.

Admin (The administrator has
the public key/cert of the user

test)

Windows-1

Linux-2

Linux-1

Add the public key of user test cert

Add the public key of user test
certAdd the public key of user test cert

Figure 36: The Administrator Adding the Users on Daemon Machines

3. Once the daemons are up and running and the users are added, the next step

is to determine how to start the processes. For example take a user ‘test’ trying

to execute class Test.java on 6 nodes. This Test.java uses mpjdev and

mpj packages imported from mpjdev.jar and mpj.jar. We do not assume

a shared file system, which essentially means that there must be a way to

download/copy the binaries along with the dependant classes and libraries

from the user machine. The downloading/copying feature is explained in

more detail in the sub-section 5.6.1.

 63

User Machine (user 'test')

1. Write the manifest file,

 Manifest-Version: 1.0
 Main-Class: Test
 Class-Path: mpjdev.jar mpj.jar

2. Make a jar file,
jar -cfm client.jar manifest Test.class

3. Start the http server to serve the code and
dependencies.
java -jar tools.jar -dir . -port 15000

4. Run the client program of the daemon,
java Client 5 http://HOST:15000/client.jar

Windows-1

Linux-2

Linux-1

send signal to
 execute class Test tw

ice

with rank 0 and 1

send signal to execute class Test
twice with rank 2 and 3

send signal to execute class Test

once with rank 4

Figure 37: MPJ Job Submission to the Remote Nodes

5.3.1 Dynamic Class Loading

For step 3, described above, we need a dynamic class loading mechanism that

copies the binaries along with all the dependencies from the user system that

runs the initiator module to the daemon (execution nodes). We have

implemented this dynamic class loading as follows,

1. The user should bundle up the program into a Java archive format called a

jar. The benefit of using jar files is that the user can specify the main class,

along with the dependencies. In the Figure 37, the main class is Test and

the dependencies for Test class are the libraries imported from

mpjdev.jar and mpj.jar. We put the names of these two dependencies

in the CLASSPATH environmental variable.

 64

2. The next step is to start an HTTP server that points to the directory

containing the client.jar file. Whenever some JVM requests this jar

file, mpj.jar and mpjdev.jar are automatically loaded into the

requesting JVM.

HTTP
server

Daemon machine

Load Test class from client.jar using
http class loading

Load mpjdev.jar and mpj.jar as the
manifest these two jars in cp attr.

Figure 38: The Dynamic Class Loading

3. The next step is to actually start the client that sends the request to the

compute nodes to execute a jar file present on a particular URL. The

compute nodes use the URL to actually download the jar file, and execute

the main class, which in Figure 38 is the Test class.

5.3.2 Security Issues

We have decided to implement a SSH like authentication mechanism for the

MPJ runtime.

1. The administrator can install the daemons on Linux or Windows,

provided they have a system account.

2. Once the daemon is running on any node, only the administrator can add

the public keys of the users to the daemons. It is assumed that each of the

 65

users of the system will have a keystore that contains their public and the

private keys.

3. The initiator module sends a signal to the daemon (execution node) along

with the user name. The daemon encrypts a random number with the

public key of the user (added in the previous step) by the administrator,

and then sends the encrypted number to the client. The initiator module

decrypts it, and sends the random number back to the daemon machine.

The daemon machine matches the random number with the number sent

by the user. If the two match each other, then the user is authenticated.

This is explained in the Figure 39.

TIM
E =>

signal to run processes
as user 'test'

Initiator Module Daemon

1. Send the signal to execute
processes

2. Encrpyt (publicKey,273) and
send to client machine.273 encrypted using pub

key

3. Decrypt
(privateKey,encryptedNum) and
send back to the daemon.

decrypted number
4. If the decrypted number,
matches the number sent, the
user is authenticated.

Figure 39: SSH-based Authentication

5.4 Summary

In this chapter, we have discussed the implementation of the mpjdev device

driver and the associated MPJ runtime infrastructure. The buffering API

implemented as part of the mpjdev allows application developers to send

 66

objects along with the other Java primitive datatypes. The device driver

implements two communication protocols. These are important to support

the different modes of sending specified by the MPI standards. These modes

include standard blocking and non-blocking, synchronous, and ready mode.

The implementation of the MPJ higher-level communications and other

features like communicators, virtual topologies, supporting derived datatypes

are currently in progress.

 67

6 Performance Evaluation

6.1 Introduction

In this chapter, we evaluate and compare the performance of the mpjdev

device driver with the native mpjdev device driver.

6.2 Test Environment

The performance tests were conducted on the DSG Cluster; known as

“StarBug”, that consists of a head node “Holly” and eight compute nodes.

The configuration of each of the nodes is described in Table 6 and Table 7.

Processor Type Dual Xeon (Prestonia)

Processor Speed 2.8 Ghz

Processor Cache 512K L2 Cache

Front Side Bus 533 MHz

RAM 2 GB ECC

Storage 80 GB ECC

Java Version J2SE 5.0 Beta 2

Operating System Debian Linux (Sarge)

Table 6: The DSG Cluster Configuration

mpjdev Version 0.1 alpha

native mpjdev mpjdev 2.0: Internal Alpha Release

MPICH MPICH-1.2.5

Table 7: The Software Versions

 68

6.3 The Evaluation of mpjdev

In this sub-section, we evaluate point-to-point communications between two

remote nodes using the Ping-Pong benchmark. The Ping-Pong benchmark

sends a message of variable length, n, is sent from one node to another. The

time for the message to travel to the remote node is half the total time

recorded. The benchmark performs the test at each data point a thousand

times, preceded by a warm-up loop of hundred iterations.

6.3.1 The Point-to-Point Comparison on Remote Linux Nodes

This section presents the point-to-point comparison of the two devices.

Theoretically, both the devices should perform almost the same for small

message with mpjdev outperforming the native mpjdev for the larger

messages because of the overhead of copying the larger sized arrays between

the Java and the native MPI. A detailed discussion of this overhead can be

found in [80].

6.3.1.1 Transfer Time Comparison

Figure 40 shows plots of the transfer time comparison between the mpjdev

and the native mpjdev. The latency that is defined as the time to transfer one

byte message is 275 microseconds and 295 microseconds for mpjdev and

native mpjdev respectively.

 69

Figure 40: A Transfer time Comparison of mpjdev and the Native mpjdev

The graph shown in Figure 40 indicates that the performance of mpjdev and

the native mpjdev is almost the same. mpjdev takes a fraction of a more time

than the native mpjdev for the message size between 4 to 64 bytes. The reason

for this overhead is the additional copy that may be incurred by the eager-

send protocol. An increase in the transfer time for both the devices is

noticeable as the message size reaches the length of 16 Kbytes. This is because

the default socket buffer size of the Linux kernel 2.4.26 is 16 Kbytes. This

plays a significant role in the overall transmission time because the messages

are divided into multiple chunks for messages larger than 16 Kbytes. Overall

with a slight overhead of the mpjdev for small messages, the performance of

the two devices is almost the same.

 70

6.3.1.2 Bandwidth Comparison

The maximum bandwidth achieved on Fast Ethernet by mpjdev and native

mpjdev is 88.11 Mbps and 87.94 Mbps respectively.

Figure 41: A Bandwidth Comparison of mpjdev and the Native mpjdev

Figure 41 indicates that there is no significant performance difference between

the two devices. The performance degradation for both the devices at 128

Kbytes (message size) is due to the change of the communication protocol

from the eager-send to the rendezvous. For larger message sizes, the overhead

of the JNI is noticeable for the native mpjdev that allows mpjdev to achieve

more throughput than the native mpjdev.

 71

6.3.2 Point-to-Point Communications on a Single Linux Node

This section presents the local host comparison of communication of the two

devices. The performance of the native mpjdev should be better than mpjdev

because the native MPI can use shared memory communication. The two Java

processes run as separate JVMs on the same machine and the only way to

communicate is through sockets. In such communications the memory bus

bandwidth becomes the bottleneck whereas the timings for native MPI is

dominant by memory access time.

6.3.2.1 Transfer Time Comparison

Figure 42 shows the transfer time comparison on the localhost between the

mpjdev and the native mpjdev. The latency is 169 microseconds and 25

microseconds for mpjdev and the native mpjdev respectively.

 72

Figure 42: A Transfer Time Comparison of mpjdev and the Native mpjdev on

Localhost

Figure 42 shows that the performance of native mpjdev is clearly better than

the mpjdev. As mentioned, this is because the two mpjdev processes on the

same machine cannot use the shared memory paradigm for communication.

6.3.2.2 Bandwidth Comparison

The maximum bandwidth achieved by mpjdev and native mpjdev is 1261.34

Mbps (for 32 Kbytes message size) and 1927.52 Mbps (for 64 Kbytes message

size) respectively.

Figure 43: A Bandwidth Comparison of mpjdev and the Native mpjdev on

Localhost

 73

The native mpjdev outperforms the mpjdev by 25% at 64 Kbytes. The poor

performance of mpjdev processes running on the same SMP cluster node is

clearly a bottleneck especially for SMP clusters where shared memory

communication is an effective way for the processors on same main board to

communicate to each other.

6.3.3 Protocol Switch limit

MPICH uses 128 Kbyes (message size in bytes) as the threshold to switch

from eager-send to rendezvous protocol. Though we note from Figure 45 that

the performance of the eager-send protocol is better for messages sizes of 1

Mbytes, but the size of the mpjdev buffer where the messages are stored does

not allow supporting eager-send messages of such length. For this reason, we

have chosen 128 Kbytes as the protocol threshold, but the switch limit is not

hard-coded in the application and can be changed by the users through the

configuration file. If the user wishes to use the eager-send protocol, then they

should increase the JVM heap size, as the default 64 Kbytes is not enough for

this kind of large mpjdev buffer.

6.3.3.1 Transfer Time Graph

 74

Figure 44: The Transfer Time of the Eager-send and Rendezvous Protocols

The latency is 282 microseconds for eager-send and 906 microseconds for the

rendezvous protocol. There is an exchange of control messages before the

actual data is transmitted using the rendezvous protocol that results in a high

latency. For the same reason, the rendezvous protocol is useful for messages

of larger size when the overhead of the control messages becomes negligible

when compared to the overall communication cost.

6.3.3.2 Bandwidth Graph

 75

Figure 45: The Bandwidth of the Eager-send and Rendezvous Protocols

The bandwidth is 88.02 Mbps and 88.11 for eager-send and rendezvous

respectively. The rendezvous protocol achieves greater bandwidth than the

eager-send because it avoids the additional copying that the eager-send may

incur that is more effective factor than the time spent on control messages in

case of rendezvous.

6.4 The Evaluation of the MPJ Point-to-Point Layer

This sub-section presents a comparison between MPJ, mpiJava, and MPICH.

Currently the point-to-point methods in MPJ are implemented on top of the

mpjdev, and the implementation of the collective communications is a work

in progress. Netpipe [17] is used to calculate the transfer time and the

bandwidth achieved for MPICH.

 76

6.4.1 Point-to-Point Comparison on remote nodes of Linux nodes

This section presents the comparison of point-to-point communication

between MPJ, mpiJava, and MPICH.

6.4.1.1 Transfer time Comparison

Figure 46 shows a plot of the transfer times of MPJ, mpiJava, and MPICH. The

latency, defined as the time to transfer one byte message, is 268 microseconds,

145 microseconds, and 247 microseconds for MPJ, MPICH, and mpiJava

respectively.

Figure 46: The Transfer Time for MPJ, mpiJava, and MPICH

 77

Figure 46 shows the transfer times for the three libraries. The transfer time

graph is significant for small messages and is useful for calculating latency.

Whereas, the bandwidth graph are significant for large messages and are

useful for evaluating the maximum bandwidth achieved.

6.4.1.2 Bandwidth Comparison

The maximum bandwidth achieved by MPJ, MPICH, and mpiJava is 89.26

Mbps, 89.57 Mbps, and 83.92 Mbps respectively.

Figure 47: The Bandwidth of MPJ, mpiJava and MPICH

Figure 47 indicates that MPICH achieves the highest bandwidth, followed by

MPJ. This indicates that the MPJ point-to-point communication layer incurs a

small overhead. MPJ and MPICH outperform mpiJava for message sizes

 78

larger than 128 Kbytes, this is due to which is because of the overhead of the

JNI.

6.5 Summary

In this chapter, we have evaluated the performance of the mpjdev by

comparing it with the native mpjdev that uses MPICH as the underlying

native MPI library. MPJ’s performance was found to be fairly close to the

native mpjdev. This comparison was followed by a comparison between MPJ,

MPICH, and mpiJava for point-to-point communications. It is clear that MPJ

outperforms mpiJava and attains performance that is comparable to MPICH.

Thus, our hypothesis presented in the design chapter that MPJ should be an

efficient and high-performance library holds true. We intend to provide a

detailed comparison of MPJ implemented on top of the mpjdev with other

MPI libraries in the near future.

 79

7 Conclusion

In this chapter, we conclude this report by discussing some of the lessons

learnt during the implementation of MPJ and outline the future research.

7.1 General summary

This report presented the design and the implementation of MPJ. One of the

obvious advantages of such a message passing system is a portable approach

to problem solving using heterogeneous operating systems and hardware

without compromising the overall communication performance. MPJ follows

a layered structure that allows enhancements to the existing infrastructure.

This also allows the higher communication layers to swap in various device

drivers to make use of specialized hardware or protocols. The mpjdev device

driver implemented as part of this project has an efficient buffering API that is

used to pack/unpack the data to/from the buffer. mpjdev implements three

communication protocols, inter-process, eager-send and the rendezvous

protocol. mpjdev provides a simple interface that provides the basic

functionality for starting up the device, setting up the communication

infrastructure and sending/receiving the data to/from the other peers. We

have found that the performance of the mpjdev is reasonable in comparison

to the native mpjdev. The point-to-point communication layer has been

implemented on top of mpjdev, and the performance comparisons to mpiJava

and MPICH in Chapter 6 show that it is possible to get high-performance

without compromising the portability of the Java language.

The experiences gained by the implementation of this message-passing library

suggest that there are still some areas where detailed research is still needed.

 80

Out of these areas, the lack of support for shared communication paradigm

between the JVMs running on the same host and efficient multi-dimensional

arrays operations are the two important areas. The JVM hides all the details of

garbage collection, though the garbage collection algorithms can be changed

through the use of command line switches to the JVM. It is desirable to have

more information about the garbage collection thread as we suspect that it is

the cause of performance overhead in some situations. It has been noticed that

while developing some memory intensive application, the JVM runs out of

memory that can only be handled by increasing the JVM heap size. The

implications of increasing the JVM heap size are not clear, and an

interfaces/tools that may expose more internal JVM information is vital for the

adoption of message passing libraries in Java like MPJ.

7.2 Future Work

Currently, the implementation of mpjdev and point-to-point communications

layers is complete. In the near future, the implementation of the runtime and

the MPJ collective operations will be completed. Once finished, we intend to

benchmark MPJ and compare it to mpiJava and other C/Fortran message

passing libraries.

7.2.1 Implementing Four Modes of Point-to-Point Communications

MPJ currently only supports the standard mode of send operation. The MPI

standard defines three additional modes of sending messages, which we

intend to implement in the near future. The three additional modes of point-

to-point communications include buffered, synchronous, and ready mode.

More details of these modes can be found in [4].

 81

The mpjdev implements three communication protocols; inter-process

communication protocol, eager-send, and rendezvous protocol. The last two

protocols along, with the buffering mechanism, at both the sender and the

receiver side can support the four modes of sending the messages.

7.2.1.1 Implementing the Collective Communications Layers

The MPI standard defines a set of collective communications operation in

order to facilitate parallel programming. Group communications makes the

task easy for application developers and makes their code more

understandable. Group communications include operations like barrier

synchronization, broadcast, gather/scatter, and reduce operations. Currently

these operations have not been implemented in MPJ, but we intend to

implement these on top of point-to-point communication layer. In addition to

collective communications, MPJ will support process topologies and

communicators in order to be a standards-based MPI implementation.

7.2.1.2 Support for Multi-dimensional Arrays

The support for multi-dimensional arrays in Java is necessary for the adoption

of any message-passing library by the technical computing community. The

reason is that multi-dimensional arrays form the basic building blocks of

nearly all of the scientific problems. Java’s multi-dimensional arrays are

fundamentally different from other traditional languages like C and Fortran.

Java deals with multi-dimensional arrays as arrays of arrays that essentially

means that a multi-dimensional array need not to be rectangular, which is

confusing for application developers as they are accustomed to rectangular

arrays like in C or Fortran. We intend to incorporate the support of multi-

 82

dimensional arrays by using the buffering API implemented by the mpjdev

device driver. Some of related work done regarding multi-dimensional arrays

can be seen in [81][82].

7.2.1.3 Enhancements to the MPJ API

During the early part of 1998, several prototypes Java bindings for MPI-like

libraries emerged. As a result, the Message-Passing Working Group of the

Java Grande Forum [83] was formed that came up with an initial draft of an

API, which was distributed at SC 98. Since then, a draft API called MPJ has

been specified, but there is no complete implementation of this specification

at the moment. The MPJ API specifications can be seen in [7][4].

The MPJ API is procedural and is not fully making use of the object-oriented

features that Java offers. We intend to come up with a draft API that is more

Java centric.

7.2.1.4 Shared Memory Communications

The Java language does not specify a way for two processes that execute in

separate JVMs on the same machine to communicate. This results in costly

communications between processes running on the same machine. There are

two ways to tackle this problem. The first approach is to develop a separate

device driver that uses JNI to invoke the native C code that handles such

shared memory communications. The second and the preferred approach, is

to run all the processes within the same JVM as different threads. The second

approach is preferable because this does not compromise the portability of the

Java language.

 83

7.2.2 The Runtime Infrastructure

The portable nature of the Java language is one of the biggest advantages for

implementing a messaging system. Some of the previously developed

message passing system use shell scripts to start the processes over the

remote nodes of the Linux cluster. Others use the native MPI runtime to start

the execution of the parallel job. These approaches are not reasonable for a

Java message passing because they compromise portability. Thus it is

necessary to develop a runtime in Java that allows spawning of processes

over heterogeneous operating systems. The runtime we are currently

implementing will be extended to build a whole message-passing

infrastructure that allows easy installation, execution, debugging, and

performance profiling of the parallel applications. In addition the runtime

should handle various software and hardware failures that the application

may encounter during the course of their execution. We explain the runtime

in more detail in this section.

7.2.2.1 Runtime Modules

In this section, we describe each of the modules of the runtime infrastructure

in more detail. Figure 48 shows DSG cluster ‘Starbug’ that consists of the head

node, connected via a private network to the compute nodes. It also shows

various modules of the MPJ runtime and their interaction. The user uses a

laptop, shown in Figure 48, to install and execute the parallel application.

 84

User Laptop

Head Node

1 2 3

4 5 N

Execute applic
atio

n

 on th
ree nodes

Daemon

Daemon

Daemon Daemon

DaemonDaemon

Master

DebuggerMonitoring
module

Iniatiator

Checkpoint
Database

Profiler

Figure 48: The MPJ Runtime Infrastructure

7.2.2.1.1 The MPJ Daemon

The daemon module runs on all the machines that participate in the execution

of a MPJ parallel application. These machines may be the computational

nodes of the cluster (Figure 48) or workstations present on the LAN.

7.2.2.1.2 The MPJ Master

The master module runs on the front-end of the cluster (Figure 48) or it may

run on any of the machines present on LAN including the host running the

initiator module. The rationale behind having this module is that it is not

possible to access all the daemons running on the compute nodes from the

user machine because the computational nodes of the cluster are normally

only accessible from the head node of the cluster. In case, an organization

does not have a cluster, then the master module can be started on any one of

the machines over the LAN machine, even the user machine.

 85

7.2.2.1.3 Initiator Module

The initiator module runs on the user machine and allows the user of this

infrastructure to execute, debug, and profile the parallel application. The user

has the option to start the graphical client, or run the initiator module on the

command line. Once the user has written the parallel application, the initiator

module allows the user to submit the application to the master module, and

get the output from the master. The initiator module also allows the check the

status of the executing application through the monitoring and profiling

interface. Moreover, it also allows debugging of the application. Java 2D [84],

Java 3D [85] and Java Analysis Studio (JAS) [86] are some of the useful Java

packages to present the information regarding the execution of the process in

a user-friendly and understandable way. We intend to re-use the code from

some of the relevant efforts [87][37] in order to save development time.

7.2.2.2 Installation of the Runtime

One of the important issues that we intend overcome is that of simplifying the

installation of the infrastructure. The task of installation may become tedious

if the users have to do it by hand, for example installing and configuring MPJ

on hundreds of nodes. One other issue is that Windows OS does not provide

a mechanism to remotely and securely install the modules like the Linux OS.

We are currently investigating ways [89] to deal with this issue.

The user must provide some configuration information like the name the

names of any machine that the user would like to run the daemon on. In case

of a cluster, the user only specifies the name of the head node. The master

module is remotely installed on the head node that finds the compute nodes

 86

and installs the daemon on all the compute nodes. In case of workstations, the

daemons are remotely installed from the user machine.

The installation of the initiator module can be done using the Java Web Start

[88] or it can be started on the user machine as a normal Java application.

7.2.2.2.1 Forming a Tree Topology

Once the daemons and the master module have been installed on the hosts,

the master modules and the daemons arrange themselves in a tree topology

with the master as the root of the tree. The master module is responsible to

manage the topology. To avoid performance bottlenecks, multiple instances

of the master modules may be started that form two trees.

7.2.3 Operations of the Runtime

In this sub-section, we outline some of the functionality provided by the

runtime infrastructure to the application developers.

7.2.3.1 Execution of the Application

The user can interact with the initiator module executing on their node to

execute the parallel application. This module can be started in a visual or

command line mode. The GUI allows a way for the application developer to

submit the application to the master, specifying the number of the processes.

The master will subsequently run the application over the daemons, either the

daemons over the cluster, or the daemons on the workstations present in the

LAN. This is shown in Figure 48, where the user has requested the execution

of an application on three nodes.

 87

7.2.3.2 Debugging the application

The master receives the information back from the daemon about the

execution of an application. It return the information back to the initiator

module running on the user host to assist in the debugging of the application,

that is critical for diagnosing potential bugs. All the information regarding the

partial execution and the point of failure is communicated back to the user,

which can be analysed to later debug the application.

7.2.3.3 Profiling and Monitoring the Application

The runtime module contains two sub-modules that keep track of the

profiling and monitoring information of the application being executed. All of

this information can be stored either in a database at the user machine for

historical purposes, or can be viewed in real-time. Tools like JVMTI [58]

dump the execution data regarding the JVM execution, which is hard to

analyse by scientists and can be presented in useful manner to help them find

potential problems.

7.2.3.4 Runtime Fault-Tolerance

Before we discuss the details of the fault-tolerant behaviour exhibited by the

runtime infrastructure, it is important to specify what module possess the

fault-tolerant behaviour, the application or the runtime infrastructure and

what faults we will address. The fault tolerance discussed in this sub-section

is exhibited by the runtime infrastructure. Secondly, the faults may occur

because a MPJ daemon may die because of a bug in the code or a hardware

 88

failure. Given that a fault occurs and has been detected by the master, which

then takes preventive measures and marks this particular daemon as faulty.

This information is sent back to the user who may manually fix the problem.

The issue of correcting the fault is out of scope of this infrastructure.

7.2.4 Application Fault-Tolerance

HPC is currently moving towards clusters having thousands of the

processors. One of the current advances is the IBM Blue Gene that will

contain 65,536 processors when fully functional. In such a cluster, hardware

and software failures will be frequent. Thus, it is essential for future parallel

application infrastructure to exhibit fault tolerance. We intend to provide

support for process migration to tackle this problem. Java is unique in this

respect from conventional languages because it is possible to track the

program counter, save the state of the process and migrate it to other machine

and resume execution, which is difficult in traditional languages. Such

process migration has been achieved in [55]. In addition, this allows

avoidance of overheads introduced by writing the checkpoints even in the

failure free execution. Al Geist et al [90] note that checkpoint and restart may

not be a practical option for these large clusters as its cost is more than the

time between the failures. For all the failures that can be detected at the

software level, we believe that the application programmers can avoid the

overhead of checkpoint and restart the applications by using process

migration at the application level.

7.2.5 Conclusions

In this report, we have discussed our early experiences with an

implementation of a Java messaging system called MPJ. MPJ uses the device

 89

drivers in similar fashion to the communication devices used in MPICH. In

this report we discussed the implementation of mpjdev, the device driver

based on the Java NIO package. We have evaluated the performance of

mpjdev and found it comparable to the native mpjdev, a device driver that

uses the underlying native MPI library. We have implemented point-to-point

communications based on the mpjdev and evaluated it against mpiJava and

MPICH. We have found the performance to be better than mpiJava and close

to MPICH. This shows that a Java messaging system built on NIO can

perform as well as the MPI implementations developed in the traditional

languages and better than the Java messaging systems that use JNI. We are

currently implementing collective communications on top of point-to-point

layer. To support the execution of parallel processes on remote hosts, we have

implemented a runtime infrastructure. We intend extend the runtime

infrastructure to allow application developers debug, profile and monitor

their parallel applications.

 90

References

[1] R. Buyya, editor, “High Performance Cluster Computing, volume 1:

Architectures and Systems”, Prentice-Hall, ISBN 0-13-13784-7, 1999.
[2] R. Buyya, editor, “High Performance Cluster Computing, volume 2:

Programming and Applications”, Prentice-Hall, ISBN 0-13- 13785-5,
1999.

[3] G. Couloris, J. Dollimore and T. Kinberg, Distributed Systems –
Concepts and Design, Third Edition, Addison-Wesley, Pearson
Education 2001, ISBN: 0201-619-180.

[4] The Message Passing Interface (MPI) standard, http://www-
unix.mcs.anl.gov/mpi/

[5] MPICH, A Portable Implementation of MPI, http://www-
unix.mcs.anl.gov/mpi/mpich/

[6] LAM/MPI, Parallel Computing, http://www.lam-mpi.org/
[7] B. Carpenter, V. Getov, G. Judd, T. Skjellum and G. Fox, MPI for Java -

Position Document and Draft API Specification, Java Grande Forum
Technical Report JGF-TR-03, November 1998.

[8] mpiJava, http://www.hpjava.org/mpiJava.html
[9] The Java Native Interface (JNI) Specifications,

http://java.sun.com/j2se/1.3/docs/guide/jni/
[10] The Remote Method Invocation (RMI) Specifications,

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/
[11] The Java New I/O Specifications,

http://java.sun.com/j2se/1.4.2/docs/guide/nio/
[12] R. Boisvert, J. Dongarra, R. Pozo, K. Remington, and G. Stewart,

Developing numerical libraries in Java, ACM, Stanford University,
Palo Alto, California, and March 1998.

[13] C. Austin, and M. Pawlan, Advanced Programming for the Java 2
Platform, Chapter 8 Performance Features and Tools, Addison Wesley
Longman, September, 2004.

[14] The JAGUAR project,
http://www.eecs.harvard.edu/~mdw/proj/old/jaguar/

[15] The java.nio.Buffer documentation,
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/Buffer.html

[16] R. Hitchens, Java NIO, OʹReilly & Associates, August 2003.
[17] D. Turner, A. Oline, X. Chen, and T. Benjegerdes, Integrating New

Capabilities into NetPIPE, Euro PVM/MPI, Venice, Italy, September
2003.

[18] Ames Laboratory, http://www.external.ameslab.gov/

 91

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.hpjava.org/mpiJava.html
http://java.sun.com/j2se/1.3/docs/guide/jni/
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/
http://java.sun.com/j2se/1.4.2/docs/guide/nio/
http://www.eecs.harvard.edu/~mdw/proj/old/jaguar/
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/Buffer.html

[19] M. Baker, H. Ong, A. Shafi, A study of Java networking on Linux
Cluster, DSG Technical Report, November 2003.

[20] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C.
Jacobs, R. Hofman, Efficient Java RMI for Parallel Programming, ACM
Transactions on Programming Languages and Systems (TOPLAS),
Volume 23, Issue 6 (November 2001), pages 747 – 775, March 2000.

[21] J. Maassen, R. V. Nieuwpoort, R. Veldema, H. E. Bal, and A. Plaat, An
Efficient Implementation of Javaʹs Remote Method Invocation, Proc.
Seventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPPʹ99), pp. 173-182, Atlanta, GA, May 4-6,
1999.

[22] Manta Fast Parallel Java, http://www.cs.vu.nl/~robn/manta/
[23] M. Welsh, A System Supporting High-Performance Communication

and I/O in Java, Masterʹs Thesis, University of California, Berkeley,
October 1999.

[24] V. Getov, S. Hummel and S. Mintchev, High-performance Parallel
programming in Java: exploiting native libraries, Concurrency: Practice
and Experience, Volume 10 (11/13), pages 863--872, 1998.

[25] S. Mintchev and V. Getov, Towards Portable Message Passing in Java:
Binding MPI, Springer-Verlag, Proceedings of the 4th European
PVM/MPI Usersʹ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 135—142, 1997,
ISBN 3-540-63697-8.

[26] University of Westminster, http://www.wmin.ac.uk
[27] G. Judd, M. Clement, and Q. Snell, DOGMA: Distributed object group

management architecture, ACM, Concurrency: Practice and
Experience, Volume 10 (11/13), pages 977-983, Workshop on Java for
High-Performance Network Computing, Palo Alto, February 1998.

[28] G. Judd, M. Clement, Q. Snell, and V. Getov, Design issues for efficient
implementation of mpi in java, In Proceedings of ACM 1999 Java
Grande Conference, pages 58-65. ACM Press, 1999.

[29] Brigham Young University, http://home.byu.edu
[30] S. Morin, I. Koren, and C. Krishna, JMPI: Implementing the Message

Passing Standard in Java, International Parallel and Distributed
Processing Symposium: IPDPS 2002 Workshops, April 15 - 19, 2002,
Fort Lauderdale, Florida

[31] University of Massachusetts, www.umass.edu
[32] KaRMI, http://wwwipd.ira.uka.de/JavaParty/KaRMI/
[33] JMPI download site, http://euler.ecs.umass.edu/jmpi/
[34] K. Dincer, Ubiquitous Message Passing Interface Implementation in

Java: jmpi, IEEE Computer Society, Proceedings of the 13th
International Symposium on Parallel Processing and the 10th

 92

http://wwwipd.ira.uka.de/JavaParty/KaRMI/

Symposium on Parallel and Distributed Processing, Pages 203, 1999,
ISBN 0-7695-0143-5.

[35] Baskent University, http://www.baskent.edu.tr
[36] The Java Parallel Virtual Machine (JPVM),

http://www.cs.virginia.edu/~ajf2j/jpvm.html
[37] K. Dincer, jmpi and a Performance Instrumentation Analysis and

Visualization Tool for jmpi, First UK Workshop on Java for High
Performance Network Computing, EUROPAR-98, Southampton, UK,
September 2-3, 1998.

[38] S. Ko, Object Based Message Passing in High Performance Computing
using Java, Syracuse University, 2000,
http://www.hpjava.org/theses/shko/thesis_paper/thesis_paper.html

[39] K. Hawick and H. James. A java based parallel programming support
environment. In Proceedings of the 8th International Conference on
High Performance Computing and Networks (HPCN), pages 363.372,
Amsterdam, May 2000. Springer LNCS.

[40] Distributed and High-Performance Computing Group,
http://www.dhpc.adelaide.edu.au

[41] University of Adelaide, www.adelaide.edu.au
[42] R. Buyya and V. Nagamani, JMPF: A Message Passing Framework for

Cluster Computing in Java, Proceedings of the Fifth International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’98), Las Vegas, Nevada, USA, CSREA Press,
1998.

[43] Queensland University of Technology, http://www.qut.edu.au
[44] Center for development of Advanced Computing,

http://www.cdacindia.com/
[45] JMPF download site, http://www.buyya.com/papers/jmpf.html
[46] Y. Chen and W. Yang (2000), Java Message Passing Package-A design

and implementation of MPI in Java, Proceedings of the Sixth
Workshop on Compiler Techniques for High-Performance Computing,
(Kaohsiung, Taiwan, March 16-17), 2000. (NSC 88-2213-E-009-006).

[47] National Chaio-Tung Univesity, www.nctu.edu.tw
[48] W. Tong, U. Ye, and W. Yao, PJMPI: Pure Java Implementation of MPI,

The Fourth International Conference on High-Performance Computing
in the Asia-Pacific Region-Volume 1, pp 533, May 14-17, 2000, Beijing,
China

[49] Shanghai University, www.shu.edu.cn
[50] W. Pugh, and J. Spacoo, MPJava: High-Performance Message Passing

in Java using Java.nio, Workshops on Languages and Compilers for
Parallel Computing, Dept. of Computer Science, University of Texas at
Austin, October 2003.

[51] The University of Maryland, http://www.umd.edu

 93

http://www.hpjava.org/theses/shko/thesis_paper/thesis_paper.html
http://www.cdacindia.com/

[52] LAM-MPI issues with kernel 2.2.x, http://www.lam-mpi.org/linux/
[53] A. Nelise, J. Maasesen, T. Kielmann, and H. E. Bal, Object-based

collective communication in Java, Java Grande Conference,
Proceedings of the 2001 joint ACM-ISCOPE conference on Java
Grande, Pages: 11 – 20, 2001, Palo Alto, California, United States, ISBN:
1-58113-359-6

[54] Vjire Universitete Amsterdam, http://www.vu.nl
[55] R. Ma, C. Wang, F. Lau, M-JavaMPI: A Java-MPI Binding with Process

Migration Support, 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRIDʹ02), p. 255, May 21 - 24,
2002, Berlin, Germany.

[56] The University of Hong Kong, http://www.hku.hk
[57] Java Virtual Machine Debug Interface,

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jvmdi-spec.html
[58] Java Virtual Machine Tool Interface,

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
[59] M-JavaMPI Project, http://www.cs.hku.hk/~clwang/projects/M-

JavaMPI.html
[60] G-JavaMPI Project, http://www.cs.hku.hk/~clwang/projects/G-

JavaMPI.htm
[61] M. Baker, B. Carpenter, et al, mpiJava: An Object-Oriented Java

interface to MPI, the 1st Java Workshop at the 13th IPPS & 10th SPDP
Conference, Puerto Rico, April 1999, LNCS, Springer Verlag,
Heidelberg, Germany, ISBN 3-540-65831-9

[62] B. Carpenter, G. Fox, S. Ko, and S. Lim, Object Serialization for
Marshalling Data in a Java Interface to MPI, Java Grande, Pages 66-71,
1999.

[63] mpiJava, http://www.hpjava.org/mpiJava.html
[64] Syracuse University, http://www.syr.edu
[65] University of Florida, http://www.ufl.edu/
[66] Indiana University, http://www.indiana.edu
[67] Distributed Systems Group, http://dsg.port.ac.uk
[68] K. Wieland, K. Kyle, R. Landau, Parallel Computing on the CPUG

Beowulf with mpiJava, A technical report, Oregon State University,
Department of Physics, July 19, 2002

[69] Many to Many Invocation for Parallel Development, Jennifer Ellis,
Andrea Solecky and Dr Hans Peter Bischof,
http://www.cs.rit.edu/~jle1028/Anhinga/

[70] mpiJava execution helper,
http://homepages.cs.ncl.ac.uk/igor.mozolevsky/

[71] S. Shende and A. D. Malony, Integration and applications of the TAU
performance system in parallel Java environments, ACM Press,
Proceedings of the 2001 joint ACM-ISCOPE conference on Java

 94

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jvmdi-spec.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://www.cs.hku.hk/~clwang/projects/M-JavaMPI.html
http://www.cs.hku.hk/~clwang/projects/M-JavaMPI.html
http://www.cs.hku.hk/~clwang/projects/G-JavaMPI.htm
http://www.cs.hku.hk/~clwang/projects/G-JavaMPI.htm
http://www.hpjava.org/mpiJava.html
http://www.cs.rit.edu/~jle1028/Anhinga/
http://homepages.cs.ncl.ac.uk/igor.mozolevsky/

Grande, Pages 87-96, 2001, Palo Alto, California, United States, ISBN 1-
58113-359-6.

[72] http://web.mit.edu/stardiff/www/6.338/progress_report.html
[73] J. Kochmar, P. Nowoczynski, J. Scott, and N. Stone, Comparing Java

Agents and MPI for writing Parallel Algorithms, Technical Report,
http://clan.psc.edu/docs/aglet.ps

[74] Mandelbrot, http://www.cs.rit.edu/~jle1028/Anhinga/mandelbrot.html
[75] A. Agarwal, J. Sharan, D. Gupta V. K. Garg, Fast forwarding

distributed programs using computation slicing, Technical Report,
http://home.iitk.ac.in/student/abhayag/reports/FastForwardingDistribu
ted.pdf

[76] mpiJava Example Programmes,
http://www.cs.cf.ac.uk/User/David.W.Walker/CM0323/code.html

[77] MPP, http://www.mi.uib.no/%7Ebjornoh/mtj/mpp/
[78] University of Bergen, http://www.uib.no
[79] B. Carpenter, mpjdev Buffer API documentation, mpjdev 2.0 Internal

Release, July 2004.
[80] Matt Welsh and David Culler, Jaguar: Enabling Efficient

Communication and I/O in Java, Concurrency: Practice and
Experience, Special Issue on Java for High-Performance Applications
Vol. 12, pp. 519-538, December 1999.

[81] Multidimensional Arrays and Multiarrays in HPJava,
http://www.hpjava.org/papers/HPJava/HPJava/node12.html

[82] Numerically Intensive Java,
http://www.alphaworks.ibm.com/tech/ninja/

[83] Java Grande, http://www.javagrande.org
[84] The Java2D package, http://java.sun.com/products/java-media/2D/
[85] The Java3D package, http://java.sun.com/products/java-media/3D/
[86] The Java Analysis Studio, http://jas.freehep.org/
[87] Sameer Shende and Allen D. Malony, Integration and applications of

the TAU performance system in parallel Java environments,
Proceedings of the 2001 joint ACM-ISCOPE conference on Java
Grande, Pages: 87 – 96, 2001, ISBN: 1-58113-359-6, Palo Alto, California,
United States

[88] Java Web Start Technology, http://java.sun.com/products/javawebstart/
[89] Sysinternals, Mark Russinovich and Bryce Cogswell,

http://www.sysinternals.com/ntw2k/freeware/psexec.shtml
[90] A. Geist, and C. Engelmann, Development of Naturally Fault Tolerant

Algorithms for Computing on 100,000 Processors, Journal of Parallel
and Distributed Computing, 2002

 95

http://home.iitk.ac.in/student/abhayag/reports/FastForwardingDistributed.pdf
http://home.iitk.ac.in/student/abhayag/reports/FastForwardingDistributed.pdf
http://www.mi.uib.no/%7Ebjornoh/mtj/mpp/
http://www.hpjava.org/papers/HPJava/HPJava/node12.html
http://www.alphaworks.ibm.com/tech/ninja/
http://www.sysinternals.com/ntw2k/freeware/psexec.shtml

	A Status Report: Early Experiences with the implementation of a Message Passing System using Java NIO
	Abstract
	List of Figures
	Introduction
	Project Objectives
	Report Outline

	Project Motivation
	Introduction
	Java Message Passing
	Benefits of the Java Programming Language
	Portability
	JIT Compilers
	An Object Oriented Language
	The Java New I/O Package
	Selectors and SocketChannels
	The Buffering API
	The Improved Performance Provided by Java I/O
	Summary
	Background and Review
	Introduction
	Using Remote Method Invocation (RMI)
	Using the JNI
	Using Sockets
	Related Projects
	Past Projects
	JavaMPI
	MPIJ
	JMPI
	jmpi
	JMPI
	JUMP and PJMPI
	JMPF
	JMPP
	PJMPI
	MPJava
	CCJ
	Present Projects (Active Projects)
	M-JavaMPI
	mpiJava
	MPP
	Summary
	MPJ Design
	Introduction
	Design Goals
	Generic Design
	Instantiation of MPJ Design
	Infrastructure
	Messaging API
	Design Constraints
	The Runtime Infrastructure
	Layer 1 (Authentication)
	Layer 2 (Dynamic Class Loading)
	Layer 3 (Execution of the process)
	Summary
	Implementation of MPJ
	Introduction
	The Implementation of mpjdev
	The mpjdev Communication Protocols
	The Eager-Send Protocol
	The Rendezvous Protocol
	Shared Memory (Internal process communication)
	The Buffering API
	Buffer Sections
	The Layout of Buffers
	Packing/Unpacking Methods
	Write/Read Methods
	Gather and Scatter Methods
	Gather and Scatter Methods for Multi-Strided Regions
	Buffer Modes
	Binding It All Together
	The Sending Process
	The Receiving Process
	The Communication Primitives of mpjdev
	The MPJ Runtime
	Dynamic Class Loading
	Security Issues
	Summary
	Performance Evaluation
	Introduction
	Test Environment

	mpjdev
	Version 0.1 alpha
	native mpjdev
	mpjdev 2.0: Internal Alpha Release
	MPICH
	MPICH-1.2.5
	The Evaluation of mpjdev
	The Point-to-Point Comparison on Remote Linux Nodes
	Transfer Time Comparison
	Bandwidth Comparison

	�
	Figure 41 indicates that there is no significant performance difference between the two devices. The performance degradation for both the devices at 128 Kbytes (message size) is due to the change of the communication protocol from the eager-send to the
	Point-to-Point Communications on a Single Linux Node
	Transfer Time Comparison
	Bandwidth Comparison

	�
	The native mpjdev outperforms the mpjdev by 25% at 64 Kbytes. The poor performance of mpjdev processes running on the same SMP cluster node is clearly a bottleneck especially for SMP clusters where shared memory communication is an effective way for the
	Protocol Switch limit
	Transfer Time Graph
	Bandwidth Graph
	The Evaluation of the MPJ Point-to-Point Layer
	Point-to-Point Comparison on remote nodes of Linux nodes
	Transfer time Comparison
	Bandwidth Comparison

	Figure 47 indicates that MPICH achieves the highest bandwidth, followed by MPJ. This indicates that the MPJ point-to-point communication layer incurs a small overhead. MPJ and MPICH outperform mpiJava for message sizes larger than 128 Kbytes, this is due
	Summary
	Conclusion
	General summary
	Future Work
	Implementing Four Modes of Point-to-Point Communications
	Implementing the Collective Communications Layers
	Support for Multi-dimensional Arrays
	Enhancements to the MPJ API
	Shared Memory Communications
	The Runtime Infrastructure
	Runtime Modules
	The MPJ Daemon
	The MPJ Master
	Initiator Module
	Installation of the Runtime
	Forming a Tree Topology
	Operations of the Runtime
	Execution of the Application
	Debugging the application
	Profiling and Monitoring the Application
	Runtime Fault-Tolerance
	Application Fault-Tolerance
	Conclusions

	MPICH, A Portable Implementation of MPI, http://www-unix.mcs.anl.gov/mpi/mpich/
	LAM/MPI, Parallel Computing, http://www.lam-mpi.org/

