
 1

An Approach to Buffer Management in Java HPC Messaging

Mark Baker, Bryan Carpenter1, Aamir Shafi

Distributed Systems Group, University of Portsmouth

Abstract

One of the most challenging aspects to designing a Java messaging system for HPC is the

intermediate buffering layer. The low-level communication device and higher levels of the

messaging software use this buffering layer to write and read messages. The Java New I/O

package adds the concept of direct buffers, which―coupled with a memory management

algorithm―opens the possibility of efficiently implementing this buffering layer. In this paper,

we present our buffering strategy, which is developed to support efficient communications and

derived datatypes in MPJ Express – our implementation of the Java MPI bindings. Our memory

management system uses Knuth’s buddy algorithm for optimal memory allocation. We evaluate

the performance of our buffering layer and demonstrate the usefulness of direct byte buffers in a

Java messaging system.

1. Introduction

A challenging aspect of implementing Java HPC messaging software is

providing an efficient intermediate buffering layer. The low-level

communication device and higher levels of the messaging software use this

buffering layer to write and read messages. The heterogeneity of these low-level

communication devices poses additional design challenges. To appreciate this

fully, assume that the user of a messaging library sends ten elements of an

integer array. The C programming language can retrieve the memory address of

this array and pass it to the underlying communication device. If the

communication device is based on TCP, it can then pass this address to the

sockets write method. For proprietary networks, like Myrinet [4], this memory

region can be registered for Direct Memory Access (DMA) transfers, or copied to

a DMA capable part of memory and sent using low level Myrinet

communication methods.

On the other hand, if a user of a Java messaging system sends an array of ten

integers, these have to be copied to a ByteBuffer, which is used as an

argument to the SocketChannel write method. Here we are only considering

the Java New I/O (NIO) [14] package as we are convinced that NIO provides

essential ingredients [1] of an efficient messaging system via non-blocking I/O

and direct buffers. For proprietary networks like Myrinet and Infiniband, NIO

provides a viable option because it is now possible to get memory addresses of

1 Open Middleware Infrastructure Institute (OMII), University of Southampton

 2

direct ByteBuffers, which can be used to register memory regions for DMA

transfers. Using direct buffers may eliminate the overhead [2] incurred by

additional copying when using JNI with JVMs that do not support pinning. On

the other hand, it may be preferable to create a native buffer using the Java

Native Interface (JNI) [13]. These native buffers can be useful for a native MPI or

a proprietary network device.

Based on these factors, we have designed an extensible buffering layer that

allows various implementations based on different storage mediums like direct

or indirect ByteBuffers, byte arrays, or memory allocated in the native C code.

The higher levels of the MPJ Express (MPJE) [5] use the buffering layer through

an interface. This implies that functionality is not tightly coupled to the storage

medium. The motivation behind developing different implementations of buffers

is to achieve optimal performance for lower level communication devices.

The buffering layer developed provides variants of write and read methods. It

also supports gather and scatter functionality that provides the basis of support

for MPI-like derived datatypes. Implementing these features in a Java messaging

system is fairly unique because derived datatypes were introduced in the MPI

standard for languages like C/Fortran. The derived datatypes can be used for

efficient sending and receiving of non-contiguous sections of user data. Also,

using derived datatypes helps avoid the overheads of Java object serialization

and de-serialization. We refer interested readers to Appendix 1 for an overview

of MPJE.

A closely related buffering API with the same gather and scatter functionality

was originally introduced for Java in the context of Adlib communications

library used by HPJava [7]. In the current work, we have extended this API to

support the derived datatypes in a fully functional MPI interface.

Our buffering strategy uses a pooling mechanism for avoiding creating an

instance of buffer for each communication method. The creation time of these

buffers can affect overall communication time, especially for large messages. Our

current implementation is based on Knuth’s buddy algorithm [12], but it is

possible to use other pooling techniques.

The main contribution of this paper is the design and implementation of our

buffering layer for HPC supported by two different pooling mechanisms. We

have evaluated the performance of these two pooling mechanisms. We show that

 3

one of them is faster with a smaller memory footprint. Also, we demonstrate the

usefulness of direct byte buffers in Java messaging systems.

This paper is organized as follows. Section 2 discusses related work. The strategy

itself with an explanation of our memory management algorithms is described in

section 3. In section 4, we present performance evaluation of our buffering

strategies. Section 5 concludes the paper outlining future research work.

2. Related Work

The most popular Java messaging system is mpiJava [6], which uses a JNI

wrapper to the underlying native C MPI library. Being a wrapper library,

mpiJava does not use a clearly distinguished buffering layer. After packing a

message onto a contiguous buffer, a reference to this buffer is passed to the

native C library. But in achieving this additional copying is required between the

JVM and the native C library if the JVM does not support pinning of memory.

This overhead is especially noticeable for large messages.

Javia [3] is a Java interface to the Virtual Interface Architecture (VIA). An

implementation of Javia exposes communication buffers used by the VI

architecture to Java applications. These communication buffers are created

outside the Java heap and can be registered for DMA transfers. This buffering

technique makes it possible to achieve performance within 1% of the raw

hardware.

An effort similar to Javia is JAGUAR [2]. This uses compiled-code

transformations to map certain Java bytecodes to short, in-lined machine code

segments. These two projects, JAGUAR and Javia were the motivating factors to

introduce the concept of direct buffers in the NIO package. The design of our

buffering layer is based on direct byte buffers. In essence, we are applying the

experiences gained by JAGUAR and Javia to design a generic and efficient

buffering layer that can be used for pure Java and proprietary devices in Java

messaging systems alike.

3. The Buffering Layer in MPJE

In this section, we discuss our approach to designing and implementing an

efficient buffering layer supported by a pooling mechanism. The self-contained

API developed as a result is called the MPJ Buffering (mpjbuf) API. The

functionality provided includes packing and unpacking of user data. The

 4

primary difficulty in implementing this is that the sockets do not directly access

the memory and thus are unable to write or read the basic datatypes. The

absence of pointers and the type safety features of the Java language make the

implementation more complex. Most of the complex operations used at the

higher levels of the library, such as communicating objects and handling gather

or scatter operations, are also supported by this buffering layer.

3.1 The Layout of Buffers

An mpjbuf buffer object contains two data storage structures. The first is a static

buffer, in which the underlying storage primitive is an implementation of the

RawBuffer interface. The implementation of static buffer called NIOBuffer

uses direct or indirect ByteBuffers. The second is a dynamic buffer where a

byte array is the storage primitive. The size of the static buffer is predefined, and

can contain only primitive datatypes. The rationale behind this is that it is

possible to calculate the number of bytes required before copying the data onto

the buffer. The dynamic buffer is used to store serialized Java objects, where it is

not possible to determine the length of the serialized objects beforehand. As a

convenience to the user, Java basic datatypes may also be stored in dynamic

buffers. In general, writing to or reading from a static section of the buffer is

much faster than the corresponding operation on a dynamic section of the buffer.

A message consists of zero or more sections. Each section can hold elements of

the same type, basic datatypes or Java objects. A section consists of a header,

followed by the actual data payload. The data stored in a static buffer can be

represented as big-endian or little-endian. This is determined by the encoding

property of the buffer, which takes on of the values

java.nio.ByteOrder.BIG_ENDIAN or

java.nio.ByteOrder.LITTLE_ENDIAN. Figure 1 shows the overall layout of

static buffer. The alignment provided by the padding at the end of each section

supports low level APIs that require it for efficiency.

 5

Figure 1: The Layout of a Static Buffer

As shown in Figure 1, a message consists of zero or more sections. The message

consists of a message header followed by the data payload. Padding of up to 7

bytes may follow a section if the total length of the section (header + data) is not a

multiple of ALIGNMENT_UNIT, which has value 8. The general layout of an

individual section in the static buffer is shown in Figure 2.

Figure 2: The Layout of a Single Section

3.2 The API

The most important class of the package used for packing and unpacking data is

mpjbuf.Buffer. This class provides two storage options. For static sections it

is possible to have alternative implementations. Figure 3 shows two

implementations of mpjbuf.RawBuffer interface. The first,

mpjbuf.NIOBuffer is an implementation based on ByteBuffers. The second,

mpjbuf.NativeBuffer is an implementation for native MPI device, which

allocates memory in the native C code. Figure 3 shows the primary buffering

classes in mpjbuf API.

 6

package
mpjbuf

RawBuffer

Buffer

NIOBuffer

NativeBuffer

Figure 3: Primary Buffering Classes in mpjbuf

There are three basic kinds of method for writing data to a buffer section and for

reading data from a buffer section. These methods are summarized in Table 1.

Packing/Unpacking

Methods

Section writing methods Section reading methods

1. Write/Read Methods write(type[] src,
 int srcOff,
 int numEls)

read(type[] dest,
 int dstOff,
 int numEls)

2. Gather/Scatter Methods gather(type[] src,
 int numEls,
 int idxOff,
 int[] indexes)

scatter(type[] dest,
 int numEls,
 int idxOff,
 int[] indexes)

3. Gather and Scatter

Methods for multi-strided

regions

strGather(type[] src,
 int srcOff,
 int rank,
 int exts,
 int srs,
 int[] shape)

strScatter(type[] dest,
 int dstOff,
 int rank,
 int exts,
 int srs,
 int[] shape)

Table 1: Buffer Packing or Unpacking Methods

The methods shown in row 1 of Table 1 are used to write and read contiguous

Java arrays of all the primitive datatypes including object arrays. The methods

shown in row 2 of Table 1 are used to write and read non-contiguous Java arrays

of all the primitive datatypes including object arrays. The methods shown in row

3 of Table 1 likewise transfer data from or to a subset of elements of a Java array,

but in these cases the selected sub-set is a "multi-strided region" of the Java array.

The specification is fairly complex, but these are useful operations for dealing

with multi-dimensional data structures, which occur often in scientific

programming.

A buffer object has two modes – write and read. The write mode allows the user

to copy the data onto the buffer, and the read mode allows the user to read the

data from the buffer. It is not permitted to read from the buffer when it is in

writeable mode. Similarly, it is not permitted to write to a buffer when it is

readable mode.

 7

3.3 Memory Management

We have implemented our own application level memory management

mechanism based on a buddy allocation scheme [12]. The motivation is to avoid

creating an instance of a buffer (mpjbuf.Buffer) for every communication

operations like Send() or Recv(), which may dominate the total

communication cost, especially for large messages. We can make efficient use of

resources by pooling buffers for future reuse instead of letting the garbage

collector reclaim the buffers and create them all over again.

The functionality provided by the buffering API is exported to the users through

a BufferFactory. Table 2 shows the functionality provided by this buffer

factory. Note that this factory returns mpjbuf.RawBuffer, which is used for

storing static sections of the messages. Because the size of dynamic sections

cannot be calculated beforehand, it is not possible to use pooling for dynamic

sections of a buffer.

public static void init(String poolingAlgo)
public static mpjbuf.RawBuffer create(int size)
public static void destroy(mpjbuf.RawBuffer buffer)
public static void shut()

Table 2: Methods of mpjbuf.BufferFactory

3.3.1 General Explanation of Buddy Algorithm

In this section, we will briefly review Knuth’s buddy algorithm. In our

implementation, available memory is divided into a series of “regions”. Each

region has a storage medium associated with it—direct or indirect ByteBuffer.

Initially, there is no region associated with the BufferFactory. Whenever a

buffer is requested, the factory checks whether there is a region with size greater

than the requested size. If a region does not exist or does not have free space, a

new region is created. For managing the buffers, there is a doubly linked list

FreeList. This FreeList refers to buffers at all possible levels starting from 0

to log2N (region_size). The level of a buffer can be thought of an integer,

which increases as log2N (buffer_size) increases. We will discuss regions along

with FreeLists and level in more detail in Section 3.3.2.

After finding or creating an appropriate region that can serve this request, the

algorithm attempts to find a free buffer at the requested or higher level. If the

buffer found is at a higher level, it is divided into two buddies and this process is

 8

repeated until we reach the required level. The BufferFactory returns the first

free buffer at this level. Every allocated buffer is aware of its offset and the size of

the region it belongs to. Figure 4 shows the allocation events of 1 Megabytes of

block when the initial region size is 8 Megabytes.

8M

4M

1M

2M

4M

Le
ve

l

8M

4M4M

2M 2M

4M

2M

1M

4M

2M

1M 1M 1M

4M

2M

a. Initializing 8M
region

b. Dividing 8M to
4M chunks

c. Dividing 4M to
2M chunks

d. Dividing 2M to
1M chunks

e. Buffer(s) at
required level

f. 1M chunk is
allocated

Figure 4: Allocating a 1M Buffer

When the buffer is de-allocated, an attempt is made to find the buddy of this

buffer. If the buddy is free, the two chunks of memory are merged together to

form a buffer at the higher level. Once we have a buffer at the higher level, we

execute the same process recursively until we do not find a buddy for the buffer

at the higher level. Figure 5 shows the de-allocation events when a block of 1

Megabytes is returned to the buffer factory.

8M

4M

1M

2M

4M

Le
ve

l

8M

4M4M

2M2M

4M

2M

1M

4M

2M

1M1M1M

4M

2M

a. 1M chunk is
allocated

b. 1M chunk is
released

c. Merging 1M
blocks

d. Merging 2M
blocks

e. Merging 4M
chunks

f. 8M chunk at
the highest level

Figure 5: De-allocating a 1M Buffer

3.3.2 Two Implementations of Buddy Allocation Scheme for mpjbuf

 9

In the MPJ buffering API it is possible to plug in different implementations of

buffer pooling. A particular strategy can be specified during the initialisation of

mpjbuf.BufferFactory. Each implementation can use different data

structures like trees or doubly linked lists. In the current implementation, the

primary storage buffer for mpjbuf is an instance of mpjbuf.NIOBuffer. Each

mpjbuf.NIOBuffer has an instance of ByteBuffer associated with it. The

pooling strategy boils down to reusing ByteBuffers encapsulated in

mpjbuf.NIOBuffer.

Our implementation strategies are able to create smaller thread-safe

ByteBuffers from the initial ByteBuffer associated with the region. We

achieve this by using BytBuffer.slice() for creating new byte buffer whose

contents are a shared sub sequence of original buffer’s contents. In the sub-

sections to follow, we discuss two implementations of memory management

techniques.

The First Pooling Strategy

Our first implementation (hereafter called Buddy1) is developed with the aim of

keeping a small memory footprint of the application. This is possible because a

buffer only needs to know its offset in order to find its buddy. This offset can be

stored at the start of the allocated memory chunk. If a user requests s bytes, the

first strategy allocates s+buddy_overhead bytes buffer. The additional

buddy_overhead bytes will be used to store the buffer offset. Also, the data

structures do not store buffer abstractions like mpjbuf.NIOBuffer in the linked

lists.

Figure 6 outlines the implementation details of our first pooling strategy.

FreeLists is a list referring to BufferLists, which contains buffers at

different levels. Here, level refers to the different sizes of buffer available. If a

buffer is of size s, then its corresponding level will be log2N (s). Initially, there is

no region associated with FreeLists. An initial chunk of memory of size

region_size is allocated. At this point, BufferLists are created starting

from 0 to log2N (region_size). When buddies are merged, a buffer is added to

the BufferList at the higher level and the buffer itself and its buddy are

removed from the BufferList at the lower level. Conversely, when a buffer is

divided to form a pair of buddies, a newly created buffer and its buddy is added

to the BufferList at the lower level while removing a buffer that is divided

from the higher level BufferList.

 10

An interesting aspect of this implementation is that FreeList and

BufferLists are independent of a region and these lists grow as new regions

are created to match user requests.

Region
1

0 1 2 N

R1

R2

B
u
f
f
e
r
L
i
s
t
s

FreeList

Region
2

Region
N

R2

R2

R1

RN

RN

R2

R2

R1

RN

R1

Figure 6: The First Implementation of Buffer Pooling

The Second Pooling Strategy

Our second implementation (hereafter called Buddy2) stores higher-level buffer

abstractions (mpjbuf.NIOBuffer) in BufferLists. Unlike the first strategy,

each region has its own FreeList and has a pointer to the next region as shown

in Figure 7. While finding an appropriate buffer for a user, this implementation

starts sequentially starting from the first region until it finds the requested buffer

or creates a new region. We expect some overhead associated with this

sequential search. Another downside for this implementation is a bigger memory

footprint.

FreeList

0 1 2 N

Region 1

B
u
f
f
e
r
L
i
s
t
s

FreeList

0 1 2 N

Region 2

B
u
f
f
e
r
L
i
s
t
s

FreeList

0 1 2 N

Region N

B
u
f
f
e
r
L
i
s
t
s

Figure 7: The Second Implementation of Buffer Pooling

 11

4. Buffering Layers Performance Evaluation

In this section, we compare the performance of our two buffering strategies with

direct allocation of ByteBuffers. Also, we are interested in exploring the

performance difference between using direct byte buffers and indirect byte

buffers in MPJE communication methods. There are six combinations of our

buffering strategies that will be compared in our first test – Buddy1 using direct

byte buffers, Buddy1 using indirect byte buffers, Buddy2 using direct byte

buffers, Buddy2 using indirect byte buffers, simple-minded allocation of NIO

direct byte buffers, and simple allocation of indirect byte buffers.

4.1 Simple Allocation Time Comparison

In our first test, we are interested in comparing isolated allocation times for a

buffer for our six allocation approaches. Only one buffer is allocated at one time

throughout the tests. This means that after measuring allocation time for a buffer,

it is de-allocated in the case of our buddy schemes (forcing buddies to merge into

original region chunk of 8 Megabytes before the next allocation occurs), or the

reference is freed in the case of straightforward ByteBuffer allocation.

Figure 8 shows a comparison of allocation times. The first thing to note is, that all

the buddy-based schemes are dramatically better than relying on the JVM’s

management of ByteBuffer. This essentially means that without a buffer

pooling mechanism, creation of intermediate buffers for sending or receiving

messages in a Java messaging system can have detrimental effect on the

performance. Results are averaged over many repeats, and the overhead of

garbage collection cycles will be included in the results in an averaged sense; this

is a fair representation of what will happen in a real application. In a general

way we attribute the dramatic increase in average allocation time for large

ByteBuffers as due to forcing proportionately many garbage collection cycles.

All the buddy variants (by design) avoid this overhead. The best strategy in

almost all cases is Buddy1 using direct buffers.

Qualitative measurements of memory footprint suggest the current

implementation of Buddy2 also has about a 20% bigger footprint because of the

extra objects stored. The final version of this paper will include memory

footprints comparison of each approach.

 12

Figure 8: Allocation Time Comparison

4.2 Incorporating Buffering Strategies into MPJE

In this test, we compare transfer times and throughput measured by a simple

ping-pong benchmark using each of the different buffering strategies. These tests

were performed on Fast Ethernet. We refer interested readers to Appendix 2 for a

detailed discussion on our methodology, test environment and comparison of

MPJE against other messaging systems. The reason for performing this test is to

see if there are any performance benefits for using direct ByteBuffers. From

the source-code of the NIO package, it appears that the JVM maintains a pool of

direct ByteBuffers for internal purposes. These buffers are used for reading

and writing messages into the socket. A user provides an argument to

SocketChannel’s write or read method. If this buffer is direct, it is used for

writing or reading messages. If this buffer is indirect, a direct byte buffer is

acquired from direct byte buffer pool and the message is copied first before

writing or reading it into the socket. Thus, we expect to see an overhead of this

additional copying for indirect buffers.

 13

b. Throughput Comparison on Fast Ethernet

a. Transfer Time Comparison on Fast Ethenet

Figure 9: Latency and Throughput Comparison

 14

Figure 9a shows transfer time comparison. Normally transfer time comparison is

useful for evaluating the performance of smaller messages. We do not see any

significant performance difference for small messages. On the other hand,

Figure 9b shows a throughput comparison and it shows MPJE achieves

maximum throughput when using direct buffer in combination with either of the

buddy implementations. We expect to see this performance overhead related to

indirect buffers to be more significant for faster networks like Gigabit Ethernet

and Myrinet. The drop in throughput at 128Kbytes message size is because of the

change in communication protocol from eager send to rendezvous.

5. Conclusions and Future work

In this paper, we have discussed the design and implementation of our buffering

layer, which uses our own implementation of buddy algorithm for buffer

pooling. For a Java messaging system, it is useful to rely on application level

memory management technique instead of relying on Java’s garbage collector

because constant creation and destruction of buffers can be a costly operation.

We benchmarked our two pooling mechanisms against each other using

combinations of direct and indirect byte buffers. We found that one of the

pooling strategies (Buddy1) is faster than the other with a smaller memory

footprint. Also, we demonstrated the performance gain of using direct byte

buffers.

We released a beta version of our software in early September 2005. This release

contains our buffering API with two implementations of buddy allocation

scheme. This API is self-contained and can be used by other Java applications for

application level memory management. Currently, we are working to release

mpiJava as a native MPI device for MPJE. Also, we have implemented initial

prototypes of gmdev and smpdev. Once these devices are stable and optimised,

we aim to release them as part of our software.

References

[1] M. Baker, H. Ong, A. Shafi, A Status Report: Early Experiences with the

implementation of a Message Passing System using Java NIO, DSG Technical

Report DSGTR06102004, October 2004,

 http://dsg.port.ac.uk/projects/mpj/docs/res/DSGTR06102004.pdf

[2] M. Welsh and D. Culler, Jaguar: Enabling Efficient Communication and I/O in

Java, Concurrency: Practice and Experience, Special Issue on Java for High-

Performance Applications Vol. 12, pp. 519-538, December 1999.

 15

[3] C.-C. Chang and T. von Eicken, Javia: A java interface to the virtual interface

architecture, Concurrency: Practice and Experience, Special Issue on Java for

High-Performance Applications, Dec. 1999.

[4] Myricom, The MX (Myrinet eXpress) library, http://www.myri.com

[5] MPJ Express, http://dsg.port.ac.uk/projects/mpj

[6] M. Baker, B. Carpenter, G. Fox, S. Hoon Ko, and S. Lim. mpiJava: An Object-

Oriented Java interface to MPI. Presented at International Workshop on Java for

Parallel and Distributed Computing, IPPS/SPDP 1999, San Juan, Puerto Rico,

April 1999.

[7] S. B. Lim, B. Carpenter, G. Fox, and H. Lee, A Device Level Communication

Library for the HPJava Programming Language. In proceedings of the IASTED

International Conference on Parallel and Distributed Computing and Systems

(PDCS 2003), November 2003

[8] M. Baker. B. Carpenter, A. Shafi, MPJ: Enabling Parallel Simulations in Java, DSG

Technical Report DSGTR19062005, June 2005,

 http://dsg.port.ac.uk/projects/mpj/docs/res/DSGTR19062005.pdf

[9] B. Carpenter, G. Fox, S. Ko, and S.Lim. mpiJava 1.2: API Specification, October

1999, http://www.npac.syr.edu/projects/pcrc/mpiJava/mpiJava.html

[10] B. Carpenter, V. Getov, G. Judd, A. Skjellum, G. Fox: MPJ: MPI-like message

passing for Java, Concurrency-Practice and Experience 12(11): 1019-1038 (2000)

[11] The Message Passing Interface (MPI) standard,

 http://www-unix.mcs.anl.gov/mpi

[12] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Second Edition, Reading, Massachusetts, USA, Addison Wesley,

1973.

[13] The Java Native Interface (JNI) Specifications,

http://java.sun.com/j2se/1.5.0/docs/guide/jni/

[14] The Java New I/O Specifications, http://java.sun.com/j2se/1.5.0/docs/guide/nio/

[15] The Java Service Wrapper Project, http://sourceforge.net/projects/wrapper/

[16] D. Turner, A. Oline, X. Chen, and T. Benjegerdes, Integrating New Capabilities

into NetPIPE, Euro PVM/MPI, Venice, Italy, September 2003

 16

Appendix 1: The MPJ Express Software

MPJ Express is an implementation of the MPI bindings for Java. In this section,

we will briefly cover the high-level features of MPJE.

MPJ Express Design

MPJE has a layered design that allows incremental development and provides

the capability to swap communication layers in or out as needed. To achieve this,

the design incorporates two device levels; MPJ device (mpjdev) [7] and xdev [8].

In this paper, we limit our discussion to only one implementation of xdev called

niodev, which is based on the Java NIO package. We are working on other

implementations of xdev—smpdev for shared memory communications and

gmdev for Myrinet. More details about the design can be found in [8].

Point-to-Point Communications

MPJE provides blocking and non-blocking point-to-point communications that

can be used to send arrays of basic Java datatypes as well as objects. MPJE

provides four send modes, which have been defined in the MPI specifications

document [11]. These control the semantics of internal buffering. The standard

send mode uses eager-send for message sizes up to 128 Kbytes and rendezvous

protocol for messages larger than this size. Synchronous send mode uses the

rendezvous protocol for communications. The ready send mode is a wrapper to

standard send2. The last one, called buffered-send follows the model

implementation of buffered mode outlined in the MPI specifications document.

Communicators, Groups and Contexts

MPI provides higher-level abstractions to create parallel libraries, which include

communicators, groups, and contexts. Communicators along with groups

provide process naming; each process in MPI is identified by its rank. The

context, which is an attribute of a communicator, provides a safe communication

universe – it can be thought of an additional tag on the messages. MPI provides

two types of communicators. The first is intracommunicators, which provides

communications within a group. The second is intercommunicators, which

provides communications between two groups. We have implemented these

features at the exported API level of MPJ Express.

2 The standard mode of send is a valid implementation of ready send.

 17

Virtual Topologies and Collective Communications

In compliance with the MPI specifications, MPJE provide two types of virtual

topologies; cartesian and graph. The cartesian topology especially is extensively

used in scientific applications. Also, we have implemented all collective

communication methods; most of these are implemented on top of point-to-point

communications. Two of the widely used methods, broadcast and barrier use n-

ary tree structure.

The Runtime Infrastructure

An important subsystem of a Java messaging system is the mechanism for

bootstrapping MPJE processes across various platforms. It is a challenge to make

this mechanism portable. If the compute-nodes are running a UNIX-based OS, it

is possible to remotely execute commands using RSH/SSH. But if the compute-

nodes are running Windows, these utilities are not universally available. The

MPJE runtime provides a unified way of starting MPJE processes on compute-

nodes irrespective of the operating system. The runtime system consists of two

modules. The daemon module executes on compute-nodes and listens for

requests to start MPJE processes. The daemon is a Java application listening on a

IP port, which starts a new JVM whenever there is a request to execute an MPJE

process. The mpjrun module acts as a client to the daemon module. This module

may be invoked on, for example, on the cluster head-node. It will contact

daemons, which will start MPJE processes in a new JVM.

Java allows one to run applications using class files as open in directory

structure, or class files bundled as a JAR file. The MPJE runtime allows the

execution of MPJE applications in either format. Users may want to load MPJE

JARs and classes either remotely or locally on the compute-nodes as shown in

Figure 10. With the remote loader, it is possible to load all classes (application

and MPJE code) from the user’s development node, such as a cluster head-node

in Figure 10b. This is useful in scenarios when there is no shared file system and

the code is constantly being modified at the head-node. With local loader, it is

possible to load all classes (application and MPJ Express code) from the compute-

node as in Figure 10a. This might be useful if there is a shared file system. As all

classes are loaded locally, this might provide better performance in comparison

to remote loader.

 18

Head-node

Compute-
node 1

Compute-
node 2

Compute-
node 3

Shared
Filesystem

A
ccess to file system

Start Execution

Local class loading

Head-node

Compute-
node 1

Compute-
node 2

Compute-
node 3

Start Execution

Filesystem

Filesystem

Filesystem

Filesystem

HTTP
server

Remote class loading

a. Local Classloading on Three Compute Nodes via a
Shared Filesystem

b. Remote Classloading on Three Compute Nodes via
a HTTP Server

Figure 10: Demonstration of Local and Remote Loading

MPJE uses the Java Service Wrapper Project [15] software to install daemons as a

native OS service. This essentially means that there is some platform specific

code used in order to achieve this.

 19

Appendix 2: Benchmarking MPJE Against Other Messaging Systems

In this section we present latency and throughput comparison of MPJE against

MPICH, LAM/MPI and mpiJava using a ping-pong benchmark. The test

environment for collecting the performance results consists of a cluster of 8 dual

Intel Xeon 2.8 GHz PCs using the Intel E7501 chipset. The PCs were equipped

with 2 Gigabytes ECC RAM with 533 MHz Front Side Bus (FSB). The

motherboard (SuperMicro X5DPR-iG2) is equipped with 2 onboard Intel Gigabit

LAN adaptors with one 64-bit 133 MHz PCI-X slot and one 64-bit 66 MHz PCI

slot. The PCs were connected together through a 24-port Ethernet switch. In

addition, two PCs were connected back-to-back via the onboard Intel Gigabit

adaptors. The PCs were running the Debian GNU/Linux with the 2.4.30 Linux

kernel. The software used for the Intel Gigabit adaptor was the proprietary Intel

e-1000 device driver. The JDK version that has been used for these tests for

mpiJava and MPJE is Sun J2SE 1.5 (update 4). MPICH and LAM/MPI have been

compiled with GNU GCC 3.3.5.

Calculating Latency

We define latency as the time taken to transfer one byte message. While

calculating latency for MPJE, mpiJava etc., we noticed variability in timing

measurements especially for small messages. This variance is clearly noticeable

not only for MPI libraries, but also for simple C or Java ping-pong benchmarks

like Netpipe [16]. The latency for C varies from 64 microseconds to 128

microseconds. Also, the latency of Java varies from 64 microseconds, 125

microseconds, and 250 microseconds. To show the variance, we have plotted

histograms shown in Figure 11. The x-axis shows the latency in microseconds.

The y-axis is a measure of how many times this particular latency value has been

repeated. The longer the bar, the more repetitions are associated with this latency

value. Figure 11a shows the histograms of Java ping-pong over 10000 iterations

for 1 Byte message size. This shows the latency measurement is jumping between

64 microseconds, 125 microseconds and 250 microseconds. Figure 11b shows the

histograms for C ping-pong experiments for 1 byte message over 10000

iterations. It is also varying between 64 microseconds, 125 microseconds, and 250

microseconds.

 20

b. C Latency Without Delaysa. Java Latency Without Delays c. Java Latency With Delays

d. MPJE Latency Without Delays e. MPJE Latency Without Delays
Figure 11: Latency Calculation Histograms

Eventually, we found out that network card drivers on our cluster have 64

microseconds network latency, which is the main cause of variance of latency

measurements. The network latency of network card drivers is an attribute that

determines the polling interval for checking new messages. A network latency of

64 microseconds means that after every 64 microseconds, the network card

driver checks for new messages. We verified the cause for variance by running

the same benchmarks on another cluster, with latency in the orders of

nanoseconds.

To negate the affect of network card’s latency, we introduced random delays

before sending the message back to the sender. To explain this, imagine we are

calculating latency between two machines A and B. Machine A starts the timer,

sends a message to B, machine B receives this message, and sends it back to

machine A. When machine A receives this message, it stops the timer. The

duration that machine A has calculated is the round trip time for sending a

message from machine A to machine B.

In our modified technique to calculate round trip time, we introduce random

delays at machine B before sending the message back to machine A. We subtract

this random delay from the round trip time calculated by machine A. Using this

 21

technique; we were able to negate the affect of network card latency. Figure 11c

shows the histograms of Java ping-pong benchmark using this technique.

The latency histograms shown in Figure 11c and Figure 11e looks like a pyramid.

Let p be physical transfer time, and t be the network latency of the card. The

minimum of this pyramid is p, peak exists at t+p, and maximum will be t+2p.

The peak also represents average latency. Using this technique, the average

latency for C is 83 microseconds and Java is 109 microseconds. As can be noticed,

the overhead incurred by the JVM is 26 microseconds. Figure 11d shows the

histograms for MPJE without delays and Figure 11e shows the histograms for

MPJE after introducing random delays.

Transfer Time and Throughput on Fast Ethernet

In this section, we present transfer time and throughput comparison of MPJE

against other messaging systems on Fast Ethernet. The latency for MPJE is 161

microseconds, mpiJava is 145 microseconds, MPICH is 126 microseconds, and

LAM/MPI is 125 microseconds as shown in Figure 12a. The reason for higher

latency is the additional layer (JVM) introduced by the Java language. We noted

that the difference between the latency of C and Java is 26 microseconds. This

difference is the main cause of overhead of MPJE.

Figure 12b shows the throughput comparisons of MPJE against other MPI

libraries. The maximum bandwidth achieved by MPJE is 87 Mbps, mpiJava is 83

Mbps, MPICH is 88 Mbps, and LAM/MPI is 90 Mbps. MPJE performs better than

mpiJava for large messages because of the JNI overhead [2], which is significant

for large messages. The drop at 128K is the change of communication protocols

from eager send to rendezvous.

Transfer Time and Throughput on Gigabit Ethernet

In this section, we present transfer time and throughput comparison of MPJE

against other messaging systems on Gigabit Ethernet. The latency for MPJE is 131

microseconds and mpiJava is 101 microseconds as shown in Figure 13a. The

reason for higher latency of MPJE is the additional layer (JVM) introduced by the

Java language.

Figure 13b shows the throughput comparisons of MPJE against other MPI

libraries. The maximum bandwidth achieved by MPJE is 680 Mbps and mpiJava

is 597 Mbps. The drop at 128K is the change of communication protocols from

 22

eager send to rendezvous. The value of this protocol switch limit can be

configured and it appears that the value of 128K is not optimal for GigE. On the

other hand, rendezvous protocol reduces an additional copying and memory

requirements for low-level communication device.

a. Latency Comparison on Fast Ethernet

b. Throughput Comparison on Fast Ethernet

Figure 12: Comparison of MPJE Against mpiJava, MPICH, and LAM/MPI on Fast

Ethernet

 23

a. Latency Comparison on Gigabit Ethernet

b. Throughput Comparison on Gigabit Ethernet

Figure 13: Comparison of MPJE Against mpiJava on Gigabit Ethernet

