
MPJ: A New Look at MPI for Java
Mark Baker1, Bryan Carpenter2, Aamir Shafi1

1. Introduction

The Message Passing Interface (MPI) was introduced in June 1994 as a standard message passing
API for parallel scientific computing. The original MPI standard had language bindings for
Fortran, C and C++. A new generation of distributed, Internet-enabled computing inspired the
later introduction of similar message passing APIs for Java [1][2]. Current implementations of
MPI for Java usually follow one of three approaches: use JNI to invoke routines of the underlying
native MPI that acts as the communication medium; implement message passing on top of Java
RMIremote method invocation of distributed objects; or implement high performance MP in
terms of low-level “pure” Java communications based on sockets. The latter approach is
preferred by some as it achieves good performance and ensures a truly portable system.

But experiences gained with these implementations suggest that there is no ‘one size fits all’
approach. Applications implemented on top of Java messaging systems can have different
requirements. For some, the main concern could be portability, while for others high-bandwidth
and low-latency could be the most important requirement. The challenging issue is how to
manage these contradictory requirements.

The MPJ project described here is developing a next generation MPI for Java―building on the
lessons learnt from earlier implementations, and incorporating a pluggable architecture that can
meet the varying requirements of contemporary scientific computing. Our initial work focuses
on improvements to the underlying messaging infrastructure (transport layer), though at the run-
time level we must also address the security and fault-tolerance requirements of the Grid.

2. MPJ Design and Implementation

To address the outlined issues, we are implementing Message Passing in Java (MPJ). This
follows a layered architecture based on an idea of device drivers. The idea is analogous to UNIX
device drivers, and provides the capability to swap layers in or out as needed. MPJ implements
the advanced features of the MPI specifications, which include derived-datatypes, virtual
topologies, different modes of send, and collective communications. The high level features are
implemented in Java, but if the underlying device uses a native MPI, it will also be possible to cut
through directly to the native implementation.

Figure 1 provides a layered view of the messaging system showing the two device levels. The
high and base level rely on the MPJ device and xdev level for actual communications. There are
two implementations of the mpjdev level. The first uses JNI wrappers to a native MPI library,
whereas the other sits on top of xdev. This is a newly proposed Java portability layer that sits
between mpjdev (described in earlier works) and the physical hardware. Figure 1 also shows
three implementations of xdev, shared memory device (smpdev), Java NIO device (niodev), and
GM communications device (gmdev).

1 Distributed Systems Group, University of Portsmouth
2 Open Middleware Infrastructure Institute, University of Southampton

MPJ point to point communications (Base level)

mpjdev (MPJ Device level)

MPJ collective Communications (High level)

Hardware (NIC, Memory etc)

 MPJ API

JNI Java NIO

Java Virtual Machine (JVM)

JNI

Native MPI
gmdev

Threads
API

smpdev

xdev

niodev

Figure 1: MPJ design

Previously, the task of bootstrapping MPI processes over a collection of machines was performed
using RSH/SSH based scripts. More recently, runtime infrastructures like MPICH’s SMPD (Super
Multi Purpose Daemon) and LAM/MPI’s runtime infrastructure provide an alternative solution.
But these systems do not use Java: the portable nature of the Java language is one of the biggest
advantages for implementing a messaging system, which will be compromised if MPJ relies on
non-portable bootstrapping strategies. The new Java runtime will facilitate instantiation of MPJ
programs from emerging Grid toolkits, like those based on WSRF and WS-I+ specifications.

3. Conclusion

Our initial performance evaluation shows MPJ achieves comparable performance to C MPI
libraries. Additionally, it provides the capability of swapping in or out different devices, using a
pluggable architecture. Such a design allows the applications to choose the communication
protocol that best suits their needs. Further details about implementation and performance
evaluation will be included in the full paper.

References

[1] Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum, and Geoffrey Fox. MPJ: MPI-like Message

Passing for Java. Concurrency: Practice and Experience, Volume 12, Number 11. September 2000.
[2] Mark Baker, Bryan Carpenter, Sung Hoon Ko, and Xinying Li. mpiJava: A Java interface to MPI.

Presented at First UK Workshop on Java for High Performance Network Computing, Europar 1998.

	MPJ: A New Look at MPI for Java
	Introduction
	MPJ Design and Implementation
	Conclusion

