
An Approach to Buffer Management in Java

HPC Messaging

Mark Baker, Bryan Carpenter and Aamir Shafi

Distributed Systems Group, University of Portsmouth

Abstract. One of the most challenging aspects to designing a Java mes-
saging system for HPC is the intermediate buffering layer. The lower and
higher levels of the messaging software use this buffering layer to write
and read messages. The Java New I/O package adds the concept of direct
buffers, which—coupled with a memory management algorithm—opens
the possibility of efficiently implementing this buffering layer. In this
paper, we present our buffering strategy, which is developed to support
efficient communications and derived datatypes in MPJ Express—our
implementation of the Java MPI API. We evaluate the performance of
our buffering layer and demonstrate the usefulness of direct byte buffers.

1 Introduction

The challenges of making parallel hardware usable have, over the years, stimu-
lated the introduction of many novel languages, language extensions, and pro-
gramming tools. Lately, though, practical parallel computing has mostly adopted
conventional (sequential) languages, with programs developed in relatively con-
ventional programming environments usually supplemented by libraries like MPI
that support parallel programming. This is largely a matter of economics: creat-
ing entirely novel development environments matching the standards program-
mers expect today is expensive, and contemporary parallel architectures predom-
inately use commodity microprocessors that can best be exploited by off-the-shelf
compilers.

This argues that if we want to “raise the level” of parallel programming,
one practical approach is to move towards advanced commodity languages.
Compared with C or Fortran, the advantages of the Java programming lan-
guage include higher-level programming concepts, improved compile-time and
run-time checking, and as a result, faster problem detection and debugging.
Also, it supports multi-threading and provides simple primitives like wait()

and notify() that can be used to synchronize access to shared resources. Re-
cent JDKs (Java Development Kits) provide greater functionality in this area, in-
cluding semaphores and atomic variables. In addition, Java’s automatic garbage
collection, when exploited carefully, relieves the programmer of many of the
pitfalls of lower-level languages.

We have developed MPJ Express (MPJE) [6], a thread-safe implementation
of Java MPI API. A challenging aspect of implementing Java HPC messaging

software is providing an efficient intermediate buffering layer. The low-level com-
munication devices and higher levels of the messaging software use this buffering
layer to write and read messages. The heterogeneity of these low-level communi-
cation devices poses additional design challenges. To appreciate this fully, assume
that the user of a messaging library sends ten elements of an integer array. The
C programming language can retrieve the memory address of this array and
pass it to the underlying communication device. If the communication device is
based on TCP, it can then pass this address to the socket’s write method. For
proprietary networks, like Myrinet [7], this memory region can be registered for
Direct Memory Access (DMA) transfers, or copied to a DMA capable part of
memory and sent using low level Myrinet communication methods. Until quite
recently doing this kind of thing in Java was hard.

JDK 1.4 introduced Java New I/O (NIO) [8]. In NIO, read and write meth-
ods on files and sockets (for example) are mediated through a family of buffer
classes handled specially by the Java Virtual Machine (JVM). The underlying
ByteBuffer class essentially implements an array of bytes, but in such a way
that the storage can be outside the JVM heap (so called direct byte buffers).

So now if a user of a Java messaging system sends an array of ten inte-
gers, they can be copied to a ByteBuffer, which is used as an argument to the
SocketChannel write method. For proprietary networks like Myrinet, NIO pro-
vides a viable option because it is now possible to get memory addresses of direct
byte buffers, which can be used to register memory regions for DMA transfers.
Using direct buffers may eliminate the overhead [9] incurred by additional copy-
ing when using Java Native Interface (JNI) [4]. On the other hand, it may be
preferable to create a native buffer using the JNI. These native buffers can be
useful for a native MPI or a proprietary network device.

We are convinced that NIO provides essential ingredients [2] of an efficient
messaging system via non-blocking I/O and direct buffers.

Based on these factors, we have designed an extensible buffering layer that
allows various implementations based on different storage mediums like direct or
indirect ByteBuffers, byte arrays, or memory allocated in the native C code. The
higher levels of MPJE use the buffering layer through an interface. This implies
that functionality is not tightly coupled to the storage medium. The motivation
behind developing different implementations of buffers is to achieve optimal per-
formance for lower level communication devices. Our buffering strategy uses a
pooling mechanism to avoid creating a buffer instance for each communication
method. The creation time of these buffers can affect overall communication
time, especially for large messages. Our current implementation is based on
Knuth’s buddy algorithm [5], but it is possible to use other pooling techniques.

The main contribution of this paper is the design and implementation of
our buffering layer for HPC supported by two different pooling mechanisms. In
addition, we have evaluated the performance of these two pooling mechanisms.
We show that one of them is faster with a smaller memory footprint. Also, we
demonstrate the usefulness of direct byte buffers in Java messaging systems.

2

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. The strategy itself with an explanation of our memory management
algorithms is described in section 3. In section 4, we present performance evalu-
ation of our buffering strategies. Section 5 concludes the paper outlining future
research work.

2 Related Work

The most popular Java messaging system is mpiJava [1], which uses a JNI wrap-
per to the underlying native C MPI library. Being a wrapper library, mpiJava
does not use a clearly distinguished buffering layer. After packing a message onto
a contiguous buffer, a reference to this buffer is passed to the native C library.
But in achieving this, additional copying may be required between the JVM and
the native C library. This overhead is especially noticeable for large messages.

Javia [3] is a Java interface to the Virtual Interface Architecture (VIA). An
implementation of Javia exposes communication buffers used by the VI archi-
tecture to Java applications. These communication buffers are created outside
the Java heap and can be registered for DMA transfers. This buffering technique
makes it possible to achieve performance within 1% of the raw hardware.

An effort similar to Javia is JAGUAR [9]. This uses compiled-code transfor-
mations to map certain Java bytecodes to short, in-lined machine code segments.
These two projects, JAGUAR and Javia were the motivating factors to introduce
the concept of direct buffers in the NIO package. The design of our buffering
layer is based on direct byte buffers. In essence, we are applying the experi-
ences gained by JAGUAR and Javia to design a general and efficient buffering
layer that can be used for pure Java and proprietary devices in Java messaging
systems alike.

3 The Buffering Layer in MPJE

In this section, we discuss our approach to designing and implementing an effi-
cient buffering layer supported by a pooling mechanism. The self-contained API
developed as a result is called the MPJ Buffering (mpjbuf) API. The function-
ality provided includes packing and unpacking of user data.

An mpjbuf buffer object contains two data storage structures. The first is a
static buffer, in which the underlying storage primitive is an implementation of
the RawBuffer interface. The implementation of static buffer called NIOBuffer

uses direct or indirect ByteBuffers. The second is a dynamic buffer where a byte
array is the storage primitive. The size of the static buffer is predefined, and can
contain only primitive datatypes. The dynamic buffer is used to store serialized
Java objects, where it is not possible to determine the length of the serialized
objects beforehand. The class structure of our package is shown in Figure 1.

3

package

mpjbuf

RawBuffer

Buffer

NIOBuffer

NativeBuffer

Fig. 1. Primary Buffering Classes in mpjbuf

3.1 Memory Management

We have implemented our own application level memory management mecha-
nism based on a buddy allocation scheme [5]. The motivation is to avoid creating
an instance of a buffer (mpjbuf.Buffer) for every communication operations like
Send() or Recv(), which may dominate the total communication cost, especially
for large messages. We can make efficient use of resources by pooling buffers for
future reuse instead of letting the garbage collector reclaim the buffers and create
them all over again. The functionality provided by the buffering API is exported
to the users through a BufferFactory.

In the MPJ buffering API it is possible to plug in different implementations
of buffer pooling. A particular strategy can be specified during the initialisa-
tion of mpjbuf.BufferFactory. Each implementation can use different data
structures like trees or doubly linked lists. In the current implementation, the
primary storage buffer for mpjbuf is an instance of mpjbuf.NIOBuffer. Each
mpjbuf.NIOBuffer has an instance of ByteBuffer associated with it. The pool-
ing strategy boils down to reusing ByteBuffers encapsulated in NIOBuffer.

Our implementation strategies are able to create smaller thread-safe Byte-

Buffers from the initial ByteBuffer associated with the region. We achieve this
by using ByteBuffer.slice() for creating new byte buffer whose contents are
a shared sub sequence of original buffers contents. In the sub-sections to follow,
we discuss two implementations of memory management techniques.

In a buddy algorithm, the region of available storage is conceptually divided
into blocks of different levels, hierarchically nested in a binary tree. A free block
at level n can be split into two blocks of level n − 1, half the size. These sibling
blocks are called buddies. To allocate a number of bytes s, a free block is found
and recursively divided into buddies until a block at level dlog

2
(s)e is produced.

When a block is freed, one checks to see if its buddy is free. If so, buddies are
merged (recursively) to consolidate free memory.

The First Pooling Strategy Our first implementation (called Buddy1 below)
is developed with the aim of keeping a small memory footprint of the application.
This is possible because a buffer only needs to know its offset in order to find
its buddy. This offset can be stored at the start of the allocated memory chunk.

Figure 2 outlines the implementation details of our first pooling strategy.
FreeList is a list of BufferLists, which contains buffers at different levels. Here,
level refers to the different sizes of buffer available. If a buffer is of size s, then
its corresponding level will be dlog

2
(s)e. Initially, there is no region associated

4

Region
1

0 1 2 N

R1

R2

B
u
f
f
e
r
L
i
s
t
s

FreeList

Region
2

Region
N

R2

R2

R1

RN

RN

R2

R2

R1

RN

R1

Fig. 2. The First Implementation of Buffer Pooling

with FreeList. An initial chunk of memory of size M is allocated. At this point,
BufferLists are created starting from 0 to log

2
(M). When buddies are merged,

a buffer is added to the BufferList at the higher level and the buffer itself
and its buddy are removed from the BufferList at the lower level. Conversely,
when a buffer is divided to form a pair of buddies, a newly created buffer and
its buddy is added to the BufferList at the lower level while removing a buffer
that is divided from the higher level BufferList. An interesting aspect of this
implementation is that FreeList and BufferLists are independent of a region
and these lists grow as new regions are created to match user requests.

The Second Pooling Strategy Our second implementation (called Buddy2
below) stores higher-level buffer abstractions (NIOBuffer) in BufferLists. Un-
like the first strategy, each region has its own FreeList and has a pointer to
the next region as shown in Figure 3. While finding an appropriate buffer for a
user, this implementation starts sequentially starting from the first region until
it finds the requested buffer or creates a new region. We expect some overhead
associated with this sequential search. Another downside for this implementation
is a bigger memory footprint.

4 Buffering Layers Performance Evaluation

In this section, we compare the performance of our two buffering strategies with
direct allocation of ByteBuffers. Also, we are interested in exploring the per-
formance difference between using direct byte buffers and indirect byte buffers
in MPJE communication methods. There are six combinations of our buffer-
ing strategies that will be compared in our first test—Buddy1, Buddy2, and
simple-minded allocation all using direct and indirect byte buffers.

5

FreeList

0 1 2 N

Region 1

B
u
f
f

e
r
L
i
s
t
s

FreeList

0 1 2 N

Region 2

B
u
f
f
e
r
L
i
s
t
s

FreeList

0 1 2 N

Region N

B
u
f
f
e
r
L
i
s
t
s

Fig. 3. The Second Implementation of Buffer Pooling

4.1 Simple Allocation Time Comparison

In our first test, we are interested in comparing isolated allocation times for
a buffer for our six allocation approaches. Only one buffer is allocated at one
time throughout the tests. This means that after measuring allocation time for
a buffer, it is de-allocated in the case of our buddy schemes (forcing buddies to
merge into original region chunk of 8 Mbytes before the next allocation occurs),
or the reference is freed in the case of straightforward ByteBuffer allocation.

Figure 4 shows a comparison of allocation times. The first thing to note is,
that all the buddy-based schemes are dramatically better than relying on the
JVMs management of ByteBuffer. This essentially means that without a buffer
pooling mechanism, creation of intermediate buffers for sending or receiving mes-
sages in a Java messaging system can have detrimental effect on the performance.
Results are averaged over many repeats, and the overhead of garbage collection
cycles will be included in the results in an averaged sense; this is a fair represen-
tation of what will happen in a real application. In a general way we attribute
the dramatic increase in average allocation time for large ByteBuffers as due to
forcing proportionately many garbage collection cycles. All the buddy variants
(by design) avoid this overhead. The allocation times for buddy based schemes
decrease for larger buffer sizes because less time is spent in traversing the data
structures to find an appropriately sized buffer. The size of the initial region is
8 Mbytes—resulting in the least allocation time for this buffer size. The best
strategy in almost all cases is Buddy1 using direct buffers.

Qualitative measurements of memory footprint suggest the current imple-
mentation of Buddy2 also has about a 20% bigger footprint because of the extra
objects stored.

In its current state of development, Buddy2 is clearly outperformed by Buddy1.
But there are good reasons to believe that with further development, a variant
of Buddy2 could be faster than Buddy1. This is future work.

4.2 Incorporating Buffering Strategies into MPJE

In this test, we compare throughput measured by a simple ping-pong benchmark
using each of the different buffering strategies. These tests were performed on

6

104

103

500
300
200
125

20

10

5
4
3
2

1

16M8M4M2M1M512K256K128K64K32K16K8K4K2K1K512256128

Al
lo

ca
tio

n
Ti

m
e

(u
s)

Buffer Size (Bytes)

 Allocation Time Comparison

Buddy1 with direct ByteBuffer
Buddy1 with indirect ByteBuffer

Buddy2 with direct ByteBuffer
ByteBuffer.allocateDirect()

ByteBuffer.allocate()
Buddy2 with indirect ByteBuffer

Fig. 4. Allocation Time Comparison

Fast Ethernet. The reason for performing this test is to see if there are any
performance benefits for using direct ByteBuffers. From the source-code of the
NIO package, it appears that the JVM maintains a pool of direct ByteBuffers
for internal purposes. These buffers are used for reading and writing messages
into the socket. A user provides an argument to SocketChannels write or read
method. If this buffer is direct, it is used for writing or reading messages. If this
buffer is indirect, a direct byte buffer is acquired from direct byte buffer pool
and the message is copied first before writing or reading it into the socket. Thus,
we expect to see an overhead of this additional copying for indirect buffers.

Figure 5 shows that MPJE achieves maximum throughput when using direct
buffer in combination with either of the buddy implementations. We expect to
see this performance overhead related to indirect buffers to be more significant
for faster networks like Gigabit Ethernet and Myrinet. The drop in throughput
at 128Kbytes message size is because of the change in communication protocol
from eager send to rendezvous.

5 Conclusions and Future Work

In this paper, we have discussed the design and implementation of our buffering
layer, which uses our own implementation of buddy algorithm for buffer pool-
ing. For a Java messaging system, it is useful to rely on an application level
memory management technique instead of relying on JVM’s garbage collector
because constant creation and destruction of buffers can be a costly operation.
We benchmarked our two pooling mechanisms against each other using combi-
nations of direct and indirect byte buffers. We found that one of the pooling
strategies (Buddy1) is faster than the other with a smaller memory footprint.
Also, we demonstrated the performance gain of using direct byte buffers.

7

80

70

60

50

40

30

20

10

16M8M4M2M1M512K256K128K64K32K16K8K4K2K1K5122561286432168421

Ba
nd

wi
dt

h
(M

bp
s)

Message Length (Bytes)

Throughput on Fast Ethernet

Buddy1 using direct ByteBuffer
Buddy1 using indirect ByteBuffer

Buddy2 using direct ByteBuffer
Buddy2 using indirect ByteBuffer

Fig. 5. Throughput Comparison

We released a beta version of our software in early September 2005. This
release contains our buffering API with the two implementations of buddy allo-
cation scheme. This API is self-contained and can be used by other Java applica-
tions for application level memory management. Currently, we are working to re-
lease additional messaging devices based on mpiJava and Myrinet eXpress(MX).

References

1. Mark Baker, Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. An
object-oriented Java interface to MPI. In International Workshop on Java for Par-

allel and Distributed Computing, San Juan, Puerto Rico, April 1999.
2. Mark Baker, Hong Ong, and Aamir Shafi. A status report: Early

experiences with the implementation of a message passing system us-
ing Java NIO. Technical Report DSGTR06102004, DSG, October 2004.
http://dsg.port.ac.uk/projects/mpj/docs/res/DSGTR06102004.pdf.

3. Chi-Chao Chang and Thorsten von Eicken. Javia: A Java interface to the virtual
interface architecture. Concurrency - Practice and Experience, 12(7):573–593, 2000.

4. The Java Native Interface Specifications. http://java.sun.com/j2se/1.3/docs/guide/jni.
5. Donald Knuth. The Art of Computer Programming: Fundamental Algorithms. Ad-

dison Wesley, Reading, Massachusetts, USA, 1973.
6. MPJ Express. http://dsg.port.ac.uk/projects/mpj.
7. Myricom, The MX (Myrinet eXpress) library. http://www.myri.com.
8. The Java New I/O Specifications. http://java.sun.com/j2se/1.4.2/docs/guide/nio.
9. Matt Welsh and David Culler. Jaguar: enabling efficient communication and I/O

in Java. Concurrency: Practice and Experience, 12(7):519–538, 2000.

8

