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Abstract

The need to increase performance while conserving en-
ergy lead to the emergence of multi-core processors. These
processors provide a feasible option to improve perfor-
mance of software applications by increasing the number
of cores, instead of relying on increased clock speed of a
single core. The uptake of multi-core processors by hard-
ware vendors present variety of challenges to the software
community. In this context, it is important that messaging li-
braries based on the Message Passing Interface (MPI) stan-
dard support efficient inter-core communication. Typically
processing cores of today’s commercial multi-core proces-
sors share the main memory. As a result, it is vital to de-
velop devices to exploit this. MPJ Express is our imple-
mentation of the MPI-like Java bindings. The software has
mainly supported communication with two devices; the first
is based on Java New I/O (NIO) and the second is based
on Myrinet. In this paper, we present two shared memory
implementations meant for providing efficient communica-
tion of multi-core and SMP clusters. The first implementa-
tion is pure Java and uses Java threads to exploit multiple
cores. Each Java thread represents an MPI level OS process
and communication between these threads is achieved using
shared data structures. The second implementation is based
on the System V (SysV) IPC API. Our goal is to achieve bet-
ter communication performance than already existing de-
vices based on Transmission Control Protocol (TCP) and
Myrinet on SMP and multi-core platforms. Another design
goal is that existing parallel applications must not be mod-
ified for this purpose, thus relieving application developers
from extra efforts of porting their applications to such mod-
ern clusters. We have benchmarked our implementations

and report that threads-based device performs the best on
an Intel quad-core Xeon cluster.
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1 Introduction

These are exciting times for the computer software and
hardware industry. The evolution of multi-core processors
is no less than a revolution. Processors vendors like Intel
and AMD have shifted their business model from increas-
ing clock speed of a single power-hungry core to increasing
energy-efficient processing cores—this was observed in an
influential article by Sutter et al [10]. Scaling performance
by increasing the clock speed of a single processor is ineffi-
cient since the power consumed is proportional to (at least)
the square of the clock rate. At some point, it is not practical
to increase the clock rate further, as the power consumption
and cooling requirements would be excessive.

Multi-core processors promise to provide improved
performance for applications by supporting multiple
lightweight processing elements or “cores” per processor
chip. But an application must exploit thread-level paral-
lelism to fully utilize the potential of multi-core processors.
This sea-change in processor architecture will have tremen-
dous impact on computer software—Dongarra et al [5] dis-
cuss this in the context of computational science software.

In the early 1990s, the Message Passing Interface (MPI)
[8] emerged as a standard for writing parallel applications
on distributed memory networked computers like clusters.
The MPI standard provides bindings for C, C++, and For-



tran programming languages. There have been efforts to
produce bindings for other popular languages like Java. The
Java Grande Forum—established due of interest of HPC
community in using Java—has produced two major bind-
ings versions; the mpiJava 1.2 API and the MPJ API. There
are several Java MPI-like libraries available, which include
MPJ Express, mpiJava, and MPJ/Ibis.

The MPJ Express Java messaging system is our open-
source and free implementation of the mpiJava 1.2 API.
This library currently provides two communication devices.
The first one is based on the Java New I/O (NIO) package
and is meant to use on interconnects like Fast and Gigabit
Ethernet. The second communication device is based on the
Myrinet eXpress (MX) [9] library. Other unique features of
the software include the explicit buffer management layer
and portable runtime system.

Currently there is no efficient mechanism for program-
ming multi-core High Performance Computing (HPC) sys-
tems with the MPJ Express software. The main reason is
lack of support for optimized communication on such pro-
cessors. Users of the MPJ Express software typically rely
on Java NIO or MX device for communication between pro-
cessing cores within a node. These devices have certain de-
gree of overhead for this kind of communication.

This paper presents the design and implementation of
shared memory devices for the MPJ Express software. Here
we implement two devices; the first one uses plain Java
threads and the second one uses the UNIX System V (SysV)
IPC library. The main aim is to achieve best possible per-
formance for intra-node communication. We also evaluate
performance of our implementations on a Linux cluster with
quad-core processing nodes.

In this paper we discuss different approaches for the de-
sign and implementation of shared memory communication
device for MPJ Express. These two approaches include Java
threads and UNIX SysV IPC libraries and are highlighted
in Figure 1. Further, we discuss the overhead during intra-
node communication in the present design of MPJ Express
and explain how this overhead can be avoided to boost the
performance by implementing shared memory communica-
tion between processors on the same node.

Rest of the paper is organized as follows. Section 2
presents the related work. This is followed by a discussion
of our two approaches to implementing shared memory de-
vices in the Section 3. Section 4 evaluates performance of
these communication devices. We conclude and discuss fu-
ture work in Section 5.

2 Related Work

In the last decade many Java messaging systems have
emerged. This clearly shows HPC community’s interest in
using Java for large scale applications. Mainly there have

Figure 1. MPJ Express Architecture

been three approaches in building such libraries; use pure
Java, rely on Java Native Interface (JNI), or use some higher
messaging API like Remote Method Invocation (RMI).

mpiJava [1] provides a fully functional and efficient
object-oriented Java interface to MPI. A unique feature of
this messaging library is that it can work with any native
C MPI library and thus can indirectly benefit from shared
memory devices in these native libraries. MPJ/Ibis [2] is
an implementation of the MPJ API specification on top of
Ibis. The communication devices used by MPJ/Ibis are
not thread-safe. MPJ/Ibis has communication devices for
java.io package, Java NIO package, and Myrinet. This
software currently does not provide any shared memory
communication device.

To the best of our knowledge, none of the existing Java
messaging system implement a shared memory communi-
cation device. mpiJava is unique in this context because
it can utilize the shared memory communication device of
the native C MPI library. On the other hand, popular C
MPI libraries including Open MPI and MPICH2 provide
high performance shared memory communication devices
on various platforms.

Open MPI [6] is an open source production quality im-
plementation of both MPI-1 and MPI-2. Open MPI is a
merger of LAM/MPI, LA-MPI, and FT-MPI. It fully sup-
ports concurrent and multi-threaded application. To effi-
ciently support a wide range of parallel machines, high
performance drivers for TCP/IP, shared memory, Myrinet,
Quadrics, and Infiniband are being developed. Open MPI
includes the features of thread safety and concurrency, dy-
namic process spawning, high performance on all plat-



Figure 2. Existing Intra-node Communication
Design

forms, portable and maintainable, component-based design
and documented APIs.

MPICH2 [7] is another implementation of MPI.
MPICH2 is designed for implementation of MPI on SMPs,
clusters, and massively parallel processors. The MPICH2
library provides a variety of shared memory communica-
tion libraries, which include ch3:shm, ch3:ssm, and
ch3:sshm. In addition, MPICH2 has a communication
subsystem called Nemesis [3]. A unique aspect is the use
of lock-free queues in this subsystem, which increases scal-
ability as number of processors or cores increase.

3 Shared Memory Communication Devices
for MPJ Express

Currently the MPJ Express software does not provide
shared memory communication device. Users of the soft-
ware rely of Java NIO and Myrinet device for intra-node
processor communication. This kind of communication
typically involves a loop back from the network card— this
is depicted in Figure 2.

Ideally communication between processors or cores
within a single node must be done via the memory bus in-
stead of the network card. This is depicted in Figure 3 and
forms the basis of our two implementations discussed in this
section.

Both shared memory communication devices are im-
plementations of the xdev device layer as shown in Fig-
ure 1. The xdev device layer only defines blocking and
non-blocking point-to-point communication methods. Ad-
vanced MPI features including the collective communica-
tion, derived datatypes, and virtual topologies are imple-
mented at the higher levels of the MPJ Express software.

In this section, we first cover the threads-based shared
memory communication device. This is followed by a dis-
cussion of SysV IPC library implementation of the xdev

Figure 3. Optimized intra-node communica-
tion design

layer.

3.1 Threads-based Device

An innovative way to build a shared memory device for
a Java messaging system like MPJ Express is to rely on Java
threads. This idea originally comes from the shared mem-
ory implementation of the Adlib communication library for
HPJava [4]. Using this approach, each MPJ process is es-
sentially represented by a Java thread and data is communi-
cated using shared data structures. An obvious advantage of
this approach—especially in the context of Java—is that an
application does not compromise portability. Other shared
memory devices rely on the JNI API and some underlying
native implementation, which obviously varies for different
OS platforms. Another advantage of this approach is better
performance since we can avoid JNI and additional copying
overheads. We demonstrate performance benefits in Section
4.

This device is an implementation of the xdev API. For
this purpose, upper layers of the software can transparently
access this particular communication driver.

Figure 4 shows the initialization routine for the native
device. The MPJ Express runtime passes some meta-data
like the total number of processors involved in computa-
tion. Also the device keeps track of registered threads—
this is indicated by the numRegisteredThreads vari-
able. Each time a thread calls the initialization procedure,
numRegisteredThreads is incremented. When the
value of this variable equals nprocs, then all threads are
notified to continue execution. This implies that all threads
have called the initialization routine and can begin their
computational tasks.

Figure 5 and 6 shows implementation sketch of non-
blocking send and receive methods. Our device ex-
tensively uses sendQueue and recvQueue for non-
blocking communication functionality. We first focus on



1 public class SMPDeviceImpl {
2
3 ...
4 int numRegisteredThreads = 0;
5
6 ProcessID id = new ProcessID(
7 UUID.randomUUID());
8 int size ;
9 Thread [] threads ;
10 HashMap ids ;
11 xdev.ProcessID id = null;
12 xdev.ProcessID[] pids = null;
13
14 SMPDeviceImpl WORLD =
15 new SMPDeviceImpl();
16 ...
17
18 ProcessID[] init(String file,
19 int rank) {
20
21 Thread currentThread =
22 Thread.currentThread() ;
23 nprocs is the total number of procs
24
25 if (numRegisteredThreads == 0) {
26
27 WORLD.size = nprocs ;
28 WORLD.pids =
29 new ProcessID [WORLD.size];
30 WORLD.threads =
31 new Thread [WORLD.size];
32 WORLD.ids = new HashMap() ;
33
34 .. assign a context for the
35 xdev-level MPI communicator
36 representative ..
37
38 }
39
40 if(currentThread is not
41 already registered) {
42
43 WORLD.id =
44 new ProcessID(UUID.randomUUID()) ;
45 WORLD.pids[rank] = WORLD.id;
46 WORLD.threads [rank] = thread ;
47 WORLD.ids.put(thread, WORLD.id) ;
48
49 numRegisteredThreads++ ;
50
51 if(numRegisteredThreads
52 == WORLD.size) {
53 initialized = true ;
54 notify all waiting threads
55 }
56 else {
57 currentThread waits
58 }
59
60 }
61
62 return WORLD.pids ;
63
64 }
65 }

Figure 4. Pseudocode for init method

1 ...
2 RecvQueue recvQueue = new RecvQueue() ;
3 SendQueue sendQueue = new SendQueue() ;
4
5 public Request isend(mpjbuf.Buffer buf,
6 ProcessID destID,
7 int tag, int context)
8 throws XDevException {
9
10 initialize sendRequest
11
12 acquire class-level lock {
13
14 find and remove matchingRecvRequest
15 from recvQueue
16
17 if(matchingRecvRequest is found) {
18 copy message from sender buffer
19 to receiver buffer
20 set pending flag to false in
21 sendRequest and matchingRecvRequest
22
23 notify the receiver thread
24 }
25 else {
26 add sendRequest object to sendQueue
27 }
28 }
29
30 return sendRequest
31
32 }
33 ...

Figure 5. Pseudocode for isend method

1 ...
2 RecvQueue recvQueue = new RecvQueue() ;
3 SendQueue sendQueue = new SendQueue() ;
4
5 public Request irecv(mpjbuf.Buffer buf,
6 ProcessID srcID,
7 int tag, int context)
8 throws XDevException {
9
10 initialize recvRequest ;
11
12 access class-level lock {
13
14 find and remove matchingSendRequest
15 from sendQueue
16
17 if(matchingSendRequest is found) {
18 copy message from sender buffer
19 to receiver buffer
20 set pending flag to false in
21 recvRequest and matchingSendRequest
22
23 notify the sender thread
24 }
25 else {
26 add recvRequest object to recvQueue
27 }
28 }
29
30 return recvRequest ;
31
32 }
33 ...

Figure 6. Pseudocode for irecv method



the functionality of non-blocking send method. Here a
sendRequest is initialized, which stores the sending
buffer reference, destID, tag, and context information.
Later this sendRequest is used to find and later remove
a matchingRecvRequest from recvQueue. A matc-
ing receive request object will only be found if the non-
blocking receive method has already been called by the
receiver. If it exists, then message is directly copied to
buffer location specified by the receiver. Otherwise, the
sendRequest is simply stored in the sendQueue—
physical message transfer occurs when the non-blocking re-
ceive method is called.

Similarly Figure 6 shows the non-blocking receive func-
tionality. Here a recvRequest is initialized and used
to find a matching send request from the sendQueue. A
match will only exist if the send method has already been
called by the sender thread. If no match exists, then the
recvRequest is added to the recvQueue.

3.2 SysV IPC based device

The SysV IPC library is a C shared memory commu-
nication API for UNIX based systems. Our second shared
memory communication device for the MPJ Express library
is an xdev implementation that uses the SysV IPC library.
The JNI API is used to invoke C routines from the Java
code. These routines include the shmget(), shmat(),
shmdt(), and shmctl().

The first operation supported by any communication de-
vice is the initialization phase. In this operation, all pro-
cesses exchange their process identifiers and create a local
index table. The xdev device layer forces all implemen-
tations to use an object of java.util.UUID object as
process identifier—this is a 128 bit number divided into 64
bit Least Significant Bits (LSBs) and 64 bit Most Signifi-
cant Bits (MSBs). During the initialization step, each pro-
cess also creates shared memory segments, which are used
to communicate data with other processes. A process uses
its own rank, an integer number, to acquire a reference to
its reserved shared memory segment. The total number of
shared memory segments at each process are equal to the to-
tal number of processes—one segment is reserved for com-
munication with a particular process.

Other important operations implemented by this device
include sending and receiving of messages. To send a mes-
sage, the sender process first acquires the shared memory
segment using its own rank and the destination process rank.
Once a reference to the reserved segment has been obtained,
the sender process copies data on it that is later read by the
receiver process. Figure 7 shows a shared memory region,
which is divided into four subsections—one for each desti-
nation process. The figure shows that the sender process is
writing messages on the first memory subsection.

Figure 7. The Sender Process Writing Mes-
sages on the Shared Memory

Figure 8. The Receiver Process Reading Mes-
sages on the Shared Memory

Similarly, the receiver process acquires the memory ad-
dress of reserved shared memory segment using source pro-
cess rank. Once the reference to the shared memory seg-
ment has been acquired, the receiver process reads data
from this region. This is depicted in the Figure 8.

Towards the end, parallel applications typically execute
the finalize method, which is supported by this communi-
cation device. At this stage, the device detaches and de-
allocates all shared memory segments.

4 Preliminary Experimental Evaluation

We begin by describing our test environment, which con-
sisted of a 32 processing core Linux cluster at our institute.
The cluster consists of eight compute nodes. Each node
contains a quad-core Intel Xeon processor. The nodes are
connected via Myrinet and Gigabit Ethernet. The compute
nodes run the SuSE Linux Enterprise Server (SLES) 10 Op-
erating System and GNU C Compiler (GCC) version 4.1.0.
Each compute node has 2 Gigabytes of main memory. We
used Open MPI version 1.2.4 as the C MPI library. For the
parallel Java version, we used the latest development ver-
sion of MPJ Express with the Sun Java Development Kit
(JDK) 1.6 Update 4.

We compared the performance of the two different ap-
proaches of shared memory communication for MPJ Ex-
press. We also benchmarked them against the shared mem-
ory device of mpiJava.

We wrote a simple ping pong program in which sender
and receiver repeatedly pass a message back and forth.
We started from message size of 1 byte and went up to 4
Megabytes. In the start, a warm up loop of 20K iterations
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Figure 9. Performance Comparison of Shared
Memory Devices

was carried out and then the average time was calculated for
10K iterations.

Figure 9(a) shows the transfer time graph for message
sizes from 1 Byte to 2 Kilobytes. Similarly, Figure 9(b)
shows throughput graph for message sizes from 4 Kilo-
bytes to 4 Megabytes. The latency comparison depicted in
the Figure 9(a) shows that the mpiJava library performs the
best, followed by our threads-based device. The reason is
the efficient communication performance of the MPICH2
library—mpiJava uses JNI to interface with this native C li-
brary. For smaller messages, JNI copying overhead is min-
imal and thus mpiJava library performs the best. On the
other hand, the throughput comparison shown in Figure 9(b)
graphs show that our threads-based device performs the best
followed by mpiJava’s shared memory device. This shows

that inter-thread communication is more efficient than inter-
process communication.

5 Conclusions and Future Work

MPJ Express is our implementation of MPI-like bind-
ings for the Java language. There is a growing community
of researchers using this software to develop their portable
parallel applications. In the context of emerging multi-core
processors, it is vital for any MPI library to support effi-
cient shared memory communication between cores on a
single processor. This paper presented two implementations
of this kind of shared memory devices. The first device
is based on Java threads where a single thread represents
a MPI process. The second device is based on the SysV
IPC API. We also conducted a preliminary evaluation and
compared our results with mpiJava’s shared memory com-
munication device. We found out that our threads-based
approach performs better for large messages. On the other
hand, mpiJava performs the best for small messages. A free
copy of the MPJ Express software can be obtained from
http://mpj-express.org.

In the future, we plan to link our shared memory com-
munication devices with the top layers of the MPJ Express
software. Once this is done we plan to benchmark point-
to-point and collective communications of the MPJ Express
software. In our previous work we introduced “nested par-
allelism” by mixing threading and messaging at the applica-
tion level. In future we will compare nested parallelism ap-
proach with the shared memory communication approach.
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