
Multicore-enabling the MPJ Express Messaging Library ∗

Aamir Shafi Jawad Manzoor
Kamran Hameed

School of Electrical Engineering and
Computer Science, National University
of Sciences and Technology, Islamabad,

Pakistan
{aamir.shafi,jawad.manzoor,kamran.hameed}@seecs.edu.pk

Bryan Carpenter
School of Computing, University of

Portsmouth, UK
bryan.carpenter@port.ac.uk

Mark Baker
School of Systems Engineering,

University of Reading, UK
mark.baker@computer.org

Abstract
With the transition to multicore processors almost complete, the
parallel processing community is seeking efficient ways to port
legacy message passing applications on shared memory and mul-
ticore processors. MPJ Express is our reference implementation of
Message Passing Interface (MPI)-like bindings for the Java lan-
guage. Starting with the current release, the MPJ Express soft-
ware can be configured in two modes: the multicore and the clus-
ter mode. In the multicore mode, parallel Java applications ex-
ecute on shared memory or multicore processors. In the cluster
mode, Java applications parallelized using MPJ Express can be
executed on distributed memory platforms like compute clusters
and clouds. The multicore device has been implemented using
Java threads in order to satisfy two main design goals of porta-
bility and performance. We also discuss the challenges of integrat-
ing the multicore device in the MPJ Express software. This turned
out to be a challenging task because the parallel application exe-
cutes in a single JVM in the multicore mode. On the contrary in
the cluster mode, the parallel user application executes in multiple
JVMs. Due to these inherent architectural differences between the
two modes, the MPJ Express runtime is modified to ensure cor-
rect semantics of the parallel program. Towards the end, we com-
pare performance of MPJ Express (multicore mode) with other C
and Java message passing libraries—including mpiJava, MPJ/Ibis,
MPICH2, MPJ Express (cluster mode)—on shared memory and
multicore processors. We found out that MPJ Express performs
signicantly better in the multicore mode than in the cluster mode.
Not only this but the MPJ Express software also performs better
in comparison to other Java messaging libraries including mpiJava
and MPJ/Ibis when used in the multicore mode on shared memory
or multicore processors. We also demonstrate effectiveness of the
MPJ Express multicore device in Gadget-2, which is a massively
parallel astrophysics N-body siimulation code.

∗ Portions of this work were previously reported in the Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (IPDPS
‘10), Atlanta, GA, April 19–23, 2010, pp. 1-7

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’10 September 15-17,2010, Vienna, Austria.
Copyright c© 2010 ACM 978-1-4503-0269-2. . . $10.00

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Algorithms, Design, Performance

Keywords Java Multicore Programming, Java MPI, MPI Java,
MPJ Express, Java HPC

1. Introduction
The computer hardware and software industry has witnessed a sig-
nificant change [17] with single power-hungry processing cores
making way for multiple energy-efficient processing cores—better
known as multicore processors. As a consequence of this sea
change, the software programmers cannot rely on processor ven-
dors to improve performance of their applications. Instead these
programmers must explicitly utilize concurrency (or parallel com-
puting) to exploit multiple cores on the multicore processors.

The emergence of multicore processors is also prevalent in
modern compute clusters typically employed by the High Per-
formance Computing (HPC) community. These modern clusters
are built with compute nodes comprising of a combination of
Symmetric Multi-Processors (SMP) and multicore processors.
The TOP500 [18] community has even designated a new name—
constellations—for this breed of clusters. Traditionally on clusters
built with single processor compute nodes, Message Passing In-
terface (MPI) [12] compliant libraries are used for writing parallel
applications. The MPI standard, by design, is targeted towards pro-
gramming distributed memory clusters—the underlying model is
Single Program Multiple Data (SPMD). MPI libraries and the asso-
ciated runtime software must be adapted to execute legacy parallel
applications efficiently on multicore processors.

The MPI standard provides bindings for traditional languages
including C, C++, and Fortran. Some of the popular MPI libraries
include Open MPI [8] and MPICH2 [10]. On the other hand, sev-
eral scientists [4][7][9][13] have suggested that Java could make an
excellent language for developing HPC software. Compared with
traditional languages like C and Fortran, Java provides portability,
higher-level programming concepts, improved compile time and
runtime checking, and, as a result, faster problem detection and de-
bugging. The JVM automatically manages the memory utilized by
the program data structures. The built-in support for threads pro-
vides a way to insert parallelism in Java applications. The Java
Development Kit (JDK) includes a large set of libraries that can
be reused by developers for rapid application development. An-
other, interesting, argument in favour of Java is the large pool of
developers—the main reason is that Java is taught as one of the
major languages in many Universities around the globe.

49

Realizing these benefits of Java, we developed the MPJ Express
[15] software that is an open source and free implementation of the
mpiJava 1.2 API [6] standardized by the Java Grande Forum [11].
With the universal adoption of multicore processors in HPC hard-
ware, it is important to multicore-enable the MPJ Express software.
This essentially means that the software and its runtime must effec-
tively parallelize and execute message passing user applications on
multicore processors. By multicore-enabling the software, we in-
tend to provide an efficient way to port legacy message passing
applications on shared memory and multicore processors.

For this purpose, the current version of the MPJ Express soft-
ware now provides two software configurations: the multicore and
the cluster configuration. The multicore configuration is especially
designed and implemented to allow application developers to effi-
ciently execute legacy code—without any modification—on multi-
core and shared memory processors. On the other hand, the clus-
ter configuration—the default configuration in earlier releases—is
meant for parallel applications executing on clusters or network of
computers. In this configuration there are two communication de-
vices, Java New I/O (NIO) device (called niodev) and Myrinet eX-
press (MX) device (called mxdev).

In this paper we describe our experiences of multicore-enabling
the MPJ Express messaging library. For this purpose, we have de-
veloped the multicore device based on Java threads. This device
is an implementation of the xdev API, which is a device layer in
the MPJ Express software. The underlying idea is that instead of
relying on network-based communication, the software must use
shared memory communication on multicore and shared memory
processors. There are several ways of implementing multicore de-
vice for MPJ Express. Let us consider a multicore processor as the
target platform for executing message passing user application. The
first option is to employ Java threads; each MPJ Express process
is a thread running inside a single JVM on the multicore proces-
sor. Here the underlying device implements message passing us-
ing global or shared variables between threads. The other option
is to start a single JVM (MPJ Express process) for each core and
these processes communicate to each other via native shared mem-
ory APIs like sysv and usysv. Our design goals for developing
multicore device are performance and portability. In our previous
study [14] we evaluated these techniques and found out that em-
ploying Java threads is the most efficient and portable mechanism
of implementing the shared memory communication and multicore
device for MPJ Express.

We also discuss the challenges of integrating the multicore de-
vice in the MPJ Express software. This turned out to be a challeng-
ing task because the parallel application executes in a single JVM
in the multicore mode. On the contrary in the cluster mode, the
parallel user application executes in multiple JVMs. Due to these
inherent architectural differences between the two modes, the MPJ
Express runtime is modified to ensure correct semantics of the par-
allel program. In addition we evaluate the performance of our mul-
ticore device against the cluster configuration devices (niodev and
mxdev) and other message passing libraries including MPJ/Ibis,
mpiJava, and MPICH2. We found that the performance of MPJ Ex-
press (multicore configuration) is substantially better than MPJ Ex-
press (cluster configuration) on shared memory and multicore pro-
cessors. Also MPJ Express library performs well in comparison to
other MPI libraries. We also demonstrate performance benefits of
MPJ Express (multicore mode) in a real-world cosmological simu-
lation code Gadget-2.

To the best of our knowledge none of the existing pure Java mes-
saging systems provide a portable and efficient method of porting
legacy message passing parallel applications on multicore proces-
sors. In this context, the main contribution of this paper is the de-

sign, implementation, integration, and evaluation of the multicore
device.

Rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 presents design of the MPJ Express soft-
ware. We also present the API used to implement the multicore de-
vice. Section 4 presents implementation details and algorithms for
the MPJ Express software. Section 5 discusses our methodology to
integrate the multicore device into the MPJ Express software. We
evaluate performance of the multicore device in the Section 6. We
conclude and discuss future work in the Section 7.

2. Related Work
This section discusses MPI libraries that support programming
multicore clusters by providing a shared memory communication
device. The idea is that MPI processes running on multiple cores of
a processor communicate to each other via shared memory.

In this context, popular native MPI libraries including Open
MPI and MPICH2 provide high performance shared memory com-
munication devices on various platforms. These devices can be
used for communication between MPI processes executing on mul-
tiple cores of a processor. Open MPI is an open-source production
quality implementation of both MPI-1 and MPI-2. It fully sup-
ports concurrent and multi-threaded applications. It includes the
features of thread safety, concurrency and dynamic process spawn-
ing. MPICH2 is another high-performance and widely portable im-
plementation of the MPI-2 standard from the Argonne National
Laboratory. MPICH2 is designed for implementation of MPI on
SMPs, clusters, and massively parallel processors. It provides vari-
ous communication devices. One of these devices is the ch3 device
which contains provides shared memory communication through
ssm and shm channels and also through the nemesis communica-
tion subsystem. Again, these shared memory devices provide supe-
rior inter-node performance on target multicore processors.

The current generation of Java messaging systems—that in-
clude MPJ Express and MPJ/Ibis—lag behind in their support for
programming multicore processors using shared memory commu-
nication devices. MPJ/Ibis [3] is an implementation of the MPJ
API specification on top of Ibis. The communication devices used
by MPJ/Ibis are not thread-safe. MPJ/Ibis has communication de-
vices for java.io package, Java NIO package, and Myrinet. This
software currently does not provide any shared memory communi-
cation device. mpiJava [1] is another Java messaging system which
provides a fully functional and efficient object-oriented Java inter-
face to MPI. A unique feature of this messaging library is that we
can configure it to use any native C MPI library. In this way we can
indirectly benefit from shared memory communication devices in
these native libraries.

Earlier versions of the MPJ Express only provided two commu-
nication devices meant for Ethernet or Myrinet based interconnects.
In this paper we introduce the multicore communication device—
implemented using Java threads—that is recently added to the pub-
lic MPJ Express release. With this shared memory or multicore de-
vice, legacy Java applications developed for distributed memory
platforms like clusters/clouds can be executed on shared memory
or multicore processor machines. MPJ Express is a thread-safe soft-
ware, which means that it can be used in combination with JOMP
threads to support nested parallelism [15], which exploits two lev-
els of parallelism at the application level—threading and message
passing. A drawback of this approach is that user applications must
be modified to exploit multicore clusters.

To the best of our knowledge, this is the first attempt to effi-
ciently port parallel message passing Java applications on multi-
core processors. Our contribution is the design, implementation,
and evaluation of threads-based multicore communication device
for MPJ Express.

50

The MPJ point to point communications (Base level)

The MPJ collective Communications (High level)

The MPJ Device (mpjdev) layer

The MPJ API

The OS and the hardware

Java Native Interface Java NIO

Java Virtual Machine (JVM)

Native MPI

The xdev layer

Pure Java mpjdev Native mpjdev

niodev mxdev multicore
device

Java Threads

Figure 1. MPJ Express Architecture

3. MPJ Express Design
This section discusses the design of the MPJ Express software.
We also discuss in detail a particular device API that is used to
implement the multicore device for the software.

MPJ Express has a layered design that allows incremental de-
velopment, and provides the capability to update and swap layers
in or out as required. At runtime end users can opt to use high-
performance proprietary network devices, or choose the pure Java
devices that use sockets or Java threads for portability. Figure 1 il-
lustrates the design and the different levels of the software: the MPJ
API, high level, base level, mpjdev, and xdev. The top three layers
are directly used by MPJ Express users to write their parallel Java
applications. The base level contains point-to-point functionality
provided by MPJ Express. Similarly high level and MPJ API refers
to collective communications, derived datatypes, virtual topologies
functionality.

The design shows that the software has two device layers: the
mpjdev and the xdev layer. The first device layer, called mpjdev, has
two implementations. The first implementation Pure Java mpjdev
in turn uses the second device layer called xdev. The second imple-
mentation Native MPI uses JNI wrappers to a native MPI library.
This device is currently not available in the public release of the
software. The xdev device layer has three implementations: niodev,
the multicore device, and mxdev. niodev and mxdev refer to com-
munication devices built using Java New I/O (NIO) and Myrinet
eXpress (MX) libraries respectively. These two libraries are used
in the cluster mode of MPJ Express. The last implementation of
xdev (the multicore device) is implemented using Java threads and
is used in the multicore mode of the software. This paper discusses
the implementation, performance evaluation, and integration of the
multicore device of the MPJ Express software.

The motivation behind developing a multicore device for the
MPJ Express software is to achieve efficient performance on multi-
core processors. Without such device MPJ Express processes run-
ning on various cores of a multicore machine communicate using
niodev that is implemented using sockets. This mechanism involves
”loopback” from network card and it is inefficient for shared mem-
ory machines because it unnecessarily forces the messages to go
through all the layers of the network protocol stack. This is de-
picted in Figure 2. Ideally in such a scenario MPJ Express pro-
cesses should communicate via shared memory—this is shown in
Figure 3.

Figure 2. Communication using Sockets on a Shared Memory or
Multicore Machine

Figure 3. Communication using Shared Memory on a Shared
Memory or Multicore Machine

51

public interface Device {

/* Category 1: Initialize and shutdown the xdev device driver */
public abstract ProcessID[] init(String[] args)

throws XDevException;
public abstract void finish() throws XDevException;

/* Category 2: Get ProcessID for the current MPJ process */
public abstract ProcessID id();

/* Category 3: Blocking and non blocking send and receive methods */
public abstract mpjdev.Request isend(mpjbuf.Buffer buf,

ProcessID destID, int tag, int context) throws XDevException;
public abstract void send(mpjbuf.Buffer buf,

ProcessID destID, int tag, int context) throws XDevException;
public abstract mpjdev.Request issend(mpjbuf.Buffer buf,

ProcessID destID, int tag, int context) throws XDevException;
public abstract void ssend(mpjbuf.Buffer buf,

ProcessID destID, int tag, int context) throws XDevException;
public abstract mpjdev.Status recv(mpjbuf.Buffer buf,

ProcessID srcID, int tag, int context) throws XDevException;
public abstract mpjdev.Request irecv(mpjbuf.Buffer buf,

ProcessID srcID, int tag, int context, mpjdev.Status status)
throws XDevException;

/* Category 4: Utilities for checking incomimg messages*/
public abstract mpjdev.Status probe(ProcessID srcID, int tag,

int context) throws XDevException;
public abstract mpjdev.Status iprobe(ProcessID srcID, int tag,

int context) throws XDevException;
public abstract mpjdev.Request peek() throws XDevException;

}

Figure 4. The xdev API

The multicore device, presented in this paper, is essentially an
implementation of the xdev device layer. The purpose of the xdev
API is to develop a thin communication device driver that can be
easily adapted for new communication conduits.

Figure 4 presents the API for the xdev device layer. The meth-
ods provided by this device layer can be roughly divided into four
categories:

1. Initialize and shutdown the xdev device driver

2. Get ProcessID for the current MPJ Express process

3. Blocking and non blocking send and receive methods

4. Utilities for checking incoming messages

4. Implementation of the Multicore Device
In this section, we discuss implementation details of the multicore
device. The multicore device is built using Java threads. This device
can also be used to program SMP machines where processors
share the main memory. Our approach is inspired by the shared
memory implementation of the Adlib communication library for
HPJava [5]. Using this approach, each MPJ process is essentially
represented by a Java thread and data is communicated using shared
data structures. An obvious advantage of this approach—especially
in the context of Java—is that an application does not compromise
portability. Other shared memory devices rely on the JNI API and
some underlying native implementation, which obviously varies
for different OS platforms. Another advantage of this approach is
better performance since we can avoid JNI and additional copying
overheads.

The remainder of this section reviews various features of the
multicore device in more detail.

4.1 Initialization and Finalization of the Multicore Device
Figure 5 shows the initialization routine for the native device.
The MPJ Express runtime passes some meta-data like the to-
tal number of processors involved in computation. Also the de-
vice keeps track of registered threads—this is indicated by the
numRegisteredThreads variable. Each time a thread calls the
initialization procedure, numRegisteredThreads is incremented.
When the value of this variable equals nprocs, then all threads are
notified to continue execution. This implies that all threads have
called the initialization routine and can begin their computational
tasks.

4.2 Blocking and Non-blocking Communication
This subsection discusses implementation details of the standard
non blocking send and receive methods.

Figure 6 and 7 shows implementation sketch of non-blocking
send and receive methods. Our device extensively uses sendQueue
and recvQueue for non-blocking communication functionality.
We first focus on the functionality of non-blocking send method.
Here a sendRequest is initialized, which stores the sending
buffer reference, destID, tag, and context information. Later this
sendRequest is used to find and later remove a matchingRecvRe-
quest from recvQueue. A matching receive request object will
only be found if the non-blocking receive method has already
been called by the receiver. If it exists, then message is directly
copied to buffer location specified by the receiver. Otherwise,
the sendRequest is simply stored in the sendQueue—physical
message transfer occurs when the non-blocking receive method is
called.

Similarly Figure 7 shows the non-blocking receive functional-
ity. Here a recvRequest is initialized and used to find a matching
send request from the sendQueue. A match will only exist if the
send method has already been called by the sender thread. If no
match exists, then the recvRequest is added to the recvQueue.

The process of communication messages by writing to and
reading from the shared queues is shown in the Figure 8. The
function of each block is explained by the diagram next to it. The
dotted lines show the movement of data in buffer or the whole Send
Request/ Receive Request object.

4.3 Utilities for Checking Incoming Messages
The xdev API provides some utility methods that can be used
for checking and probing incoming messages at the receiver pro-
cess without actually receiving them. Examples of such meth-
ods include iprobe() and probe() methods. Psuedocode for the
iprobe() is shown in the Figure 9. Another method—that falls in
this category— provided by the xdev API is the peek() method,
which is a blocking operation that returns the most recently com-
pleted Request object.

5. Integration with MPJ Express
This section presents a discussion of integrating the multicore de-
vice in the MPJ Express software. The MPJ Express runtime and
some higher layers of the software were modified for this purpose
and we outline some of the changes in this section.

5.1 Ensuring Correct Semantics of the Parallel Program by
using Custom Class Loading

The task of integrating the multicore device into the MPJ Express
software turned out to be a challenging one due to inherent archi-
tectural differences between the cluster and the multicore configu-
ration mode. In the cluster mode the runtime starts new JVMs to
represent individual MPI processes. But in the case of the multi-
core device, each MPI process is represented by a Java thread. This

52

1 public class SMPDeviceImpl {
2
3 ...
4 int numRegisteredThreads = 0;
5
6 ProcessID id = new ProcessID(
7 UUID.randomUUID());
8 int size ;
9 Thread [] threads ;
10 HashMap ids ;
11 xdev.ProcessID id = null;
12 xdev.ProcessID[] pids = null;
13
14 SMPDeviceImpl WORLD =
15 new SMPDeviceImpl();
16 ...
17
18 ProcessID[] init(String file,
19 int rank) {
20
21 Thread currentThread =
22 Thread.currentThread() ;
23 nprocs is the total number of procs
24
25 if (numRegisteredThreads == 0) {
26
27 WORLD.size = nprocs ;
28 WORLD.pids =
29 new ProcessID [WORLD.size];
30 WORLD.threads =
31 new Thread [WORLD.size];
32 WORLD.ids = new HashMap() ;
33
34 .. assign a context for the
35 xdev-level MPI communicator
36 representative ..
37
38 }
39
40 if(currentThread is not
41 already registered) {
42
43 WORLD.id =
44 new ProcessID(UUID.randomUUID()) ;
45 WORLD.pids[rank] = WORLD.id;
46 WORLD.threads [rank] = thread ;
47 WORLD.ids.put(thread, WORLD.id) ;
48
49 numRegisteredThreads++ ;
50
51 if(numRegisteredThreads
52 == WORLD.size) {
53 initialized = true ;
54 notify all waiting threads
55 }
56 else {
57 currentThread waits
58 }
59
60 }
61
62 return WORLD.pids ;
63
64 }
65 }

Figure 5. Pseudocode for init method

1 ...
2 RecvQueue recvQueue = new RecvQueue() ;
3 SendQueue sendQueue = new SendQueue() ;
4
5 public Request isend(mpjbuf.Buffer buf,
6 ProcessID destID,
7 int tag, int context)
8 throws XDevException {
9
10 initialize sendRequest
11
12 acquire class-level lock {
13
14 find and remove matchingRecvRequest
15 from recvQueue
16
17 if(matchingRecvRequest is found) {
18 copy message from sender buffer
19 to receiver buffer
20 set pending flag to false in
21 sendRequest and matchingRecvRequest
22
23 notify the receiver thread
24 }
25 else {
26 add sendRequest object to sendQueue
27 }
28 }
29
30 return sendRequest
31
32 }
33 ...

Figure 6. Pseudocode for isend method

1 ...
2 RecvQueue recvQueue = new RecvQueue() ;
3 SendQueue sendQueue = new SendQueue() ;
4
5 public Request irecv(mpjbuf.Buffer buf,
6 ProcessID srcID,
7 int tag, int context)
8 throws XDevException {
9
10 initialize recvRequest ;
11
12 access class-level lock {
13
14 find and remove matchingSendRequest
15 from sendQueue
16
17 if(matchingSendRequest is found) {
18 copy message from sender buffer
19 to receiver buffer
20 set pending flag to false in
21 recvRequest and matchingSendRequest
22
23 notify the sender thread
24 }
25 else {
26 add recvRequest object to recvQueue
27 }
28 }
29
30 return recvRequest ;
31
32 }
33 ...

Figure 7. Pseudocode for irecv method

53

Figure 8. Communication between MPJ Express Sender and Re-
ceiver Threads

1 ...
2 RecvQueue recvQueue = new RecvQueue() ;
3 SendQueue sendQueue = new SendQueue() ;
4
5 public mpjdev.Status iprobe(ProcessID srcID, int tag,
6 int context) throws XDevException {
7
8 mpjdev.Status status = null;
9 ProcessID myID = id();
10 SMPSendRequest request = sendQueue.check(context,
11 myID, srcID, tag);
12
13 if (request != null) {
14 status = new mpjdev.Status(request.srcID.uuid(),
15 request.tag, -1, request.type, request.numEls);
16 }
17
18 return status;
19 }
20 ...

Figure 9. Pseudocode for iprobe method

1 import mpi.*;
2
3 public class HelloBug {
4
5 static int sharedVar = 0 ;
6
7 public static void main(String args[]) throws Exception {
8 MPI.Init(args) ;
9 int rank = MPI.COMM_WORLD.Rank() ;

10 sharedVar++ ;
11 System.out.println("Proc <"+rank+">: sharedVar = "+
12 "<"+sharedVar+">") ;
13 MPI.Finalize() ;
14 }
15 }

Figure 10. Source-code to Demonstrate Runtime Issues with the
Multicore Device

essentially means that the MPJ Express runtime and some parts of
the higher level middleware code were modified to take care of this
major change.

A major hurdle is that in the multicore configuration, all MPJ
Express processes share the same code and data variables. In
the case of cluster configuration, since all processes execute in
a seprate JVM, no code or variables are shared between processes.
This kind of resource sharing is essential for writing the multicore
device but it also creates problems at the top levels of the software.
To explain this particular issue further, we take an example of a
user parallel application that defines static variables in it. Figure
10 shows the source code that demonstrates this issue. The code
shows a hello world MPJ Express. At line 5, a static variable
named sharedVar is initialized to the value of 0. The code starts
by executing the main method, which begins at line 7. The MPJ Ex-
press library is initialized at line 8 using the MPI.Init() method.
Later each process obtains its own identity in the MPI.COMM WORLD
communicator and stores it in the rank variable. This is followed
by incrementing the shared variable sharedVar on line 10. Later
each process prints the value of its rank and the value of the static
variable sharedVar and finalizes the MPJ Express library.

If we execute the code in the cluster configuration, we observe
the following output:

Proc <0>: sharedVar = <1>
Proc <1>: sharedVar = <1>

This is the correct and desired output. Here the HelloBug class
is executed by two MPJ processes in a SPMD fashion. Both of these
processes execute in a separate JVM and thus do not share the static
variable sharedVar—for this reason both processes increment the
variable first and print 1. This execution model is also depicted in
the Figure 11a.

On the other hand, when the code is executed in the multicore
configuration, the following output is observed:

Proc <0>: sharedVar = <1>
Proc <1>: sharedVar = <2>

This output is incorrect primarily because it is inconsistent with
the cluster configuration output. In this case, the Hellobug class
is executed by two threads—representing MPI processes—inside a
single JVM. Since they are in a single JVM, both of them share the
static variable sharedVar. This situation is depicted in the Figure
11b.

The issue of application-level static variable only introduces
a certain kind of inconsistent behaviour. There are several data
variables in the MPJ Express source code that must not be shared
between processes. On the other hand, the multicore device itself
relies on shared data structures for its normal operation—send and
receive queues are examples of these. In this case, we need to

54

Machine A Machine B

Machine A

Proc  0
sharedVar=1

Proc  1
sharedVar=1

Proc  0
sharedVar=1

Proc  1
sharedVar=2

a) MPJ Express Application executing in the Cluster
Configuration with two Processes

b) MPJ Express Application executing in the Multicore
Configuration with two Processes

Figure 11. MPJ Express Application Running with two Processes
in the Cluster and the Multicore Configuration

develop a new strategy where certain sections of the source code
are shared and others are not.

We solved this issue by defining a custom class loader. But
before diving into the details, we will briefly recap the basics of
Java class loading.

The class loader is the means by which Java classes and re-
sources are loaded into the JVM. In the Java language, class loaders
have a hierarchical relationship and are organized in the form of a
tree. Each class loader has a parent class loader except the bootstrap
class loader. At the root of the tree lies the bootstrap class loader
which loads core Java classes. It is followed by extension class
loader which loads classes from the extension directories. Next in
the hierarchy is the system class loader, which loads classes present
on the CLASSPATH environment variable. At the leaves of the tree
are the user-defined class loaders.

Now we shift our attention to the methodology used for fixing
the issue of shared data variables. In the JVM, a class is typically
identified by its full name and the class loader used to load it. Now
imagine if we load two objects of the same class by two different
user-defined class loaders, then these will be treated as two objects
of distinct classes by the JVM. A side-effect of this is that any static
variable in these objects will also not be shared.

There are some static variables in higher layers of MPJ Express
that must not be shared by executing threads. On the other hand
static variables and data structures in the lower layers must be
shared because they are needed for shared memory communication
implemented in the multicore device. So we devised a strategy
of loading the classes in higher layers of MPJ Express through
our user-defined class loader which we call as “thread-local class
loader”. This resulted in isolation of the static variables in these
classes. On the other hand we loaded the classes in lower layers
of MPJ Express through system class loader, which enabled us to
use shared data structures for communication between threads. We
achieved this by generating separate jars for the source classes of
each layer of MPJ Express and dividing them into two groups.

1. Group1: this includes mpi, mpjdev and user-application classes.

2. Group2: this includes xdev, shmdev, mpjbuf and mpj-runtime
classes.

The path of the jars of Group1 containing classes of user appli-
cation and higher layers of MPJ Express is converted into a URL
and passed to the constructor of thread-local class loader, which is

a URLClassLoader. The thread-local class loader first delegates
the class loading to its parent, which is the system class loader.
Since these classes are not on the CLASSPATH so the parent fails to
load the classes. Now the thread-local class loader searches the URL,
opens the JAR files on the URL as needed and loads the classes. In
this way the user application classes and the classes of higher lay-
ers of MPJ Express are loaded through thread-local class loader. On
the other hand the jars of Group2 containing classes of lower layers
of MPJ Express are placed on CLASSPATH so they are loaded by the
system class loader.

5.2 Communication of Java Objects
We also encountered class loading issues while implementing com-
munication of Java objects, which heavily relies on object serial-
ization and de-serialization. Object serialization is the process of
converting Java objects to a byte array and de-serialization is the
process of converting a byte array to Java objects.

The MPJ Express software relies on the default serialization
mechanism provided by the JDK for communication of objects.
It makes extensive use of the buffering API to implement derived
datatypes. The buffering API provides write() and read() meth-
ods. When the Send() method is called by the user, the message
is first packed using the write() method onto a buffer that is
used for communication by the underlying communication devices.
Similarly, when receiving a message with the Recv() method,
the read() method is called, which unpacks the message from
mpjbuf.Buffer onto the user specified datatype. Sending and re-
ceiving objects using threads which have different class loader is
not very simple and straightforward. In write() method the ob-
ject is serialized by current class loader which is thread-local class
loader but when we deserialize this object in read() method it is
deserialized using the system class loader by default, using JDK
standard ObjectInputStream. The JVM considers the deserial-
ized object as different from the object that was sent despite the fact
the both of these objects are created using the same class file. As
a result ClassNotFoundException is thrown in read() method
while deserializing.

To solve this issue we have created CustomObjectInputStream
class which overrides the resolveClass() method of ObjectIn-
putStream class. In this method we get the thread-local class
loader of current thread which we initially set in MultiThreadedS-
tarter class, using getContextClassLoader() method of
Thread class. Then we load the class using thread-local class
loader in Class.forName()method. The pseudocode for Custom-
ObjectInputStream class is shown in the Figure 12.

6. Performance Evaluation
This section presents performance evaluation of the MPJ Express
multicore configuration. We also compare the performance with
other popular C and Java message passing systems.

For the purpose of evaluation, we use the following benchmarks
or applications:

1. Ping Pong Benchmark for Basic Datatype

2. Ping Pong Benchmark for Indexed Datatype

3. Java Gadget-2 Application

For ping pong benchmarks used to evaluate performance of
point-to-point communication, the test environment was a 32 pro-
cessing core Linux cluster at NUST, Pakistan. The cluster consists
of eight compute nodes. Each node contains a quad-core Intel Xeon
processor. The nodes are connected via Myrinet and Gigabit Eth-
ernet. The compute nodes run the SuSE Linux Enterprise Server
(SLES) 10 Operating System and GNU C Compiler (GCC) version

55

1 public class CustomObjectInputStream extends
2 ObjectInputStream {
3
4 public CustomObjectInputStream (InputStream in)
5 throws IOException {
6 super(in);
7 }
8
9 @Override
10 public Class resolveClass(ObjectStreamClass desc)
11 throws IOException {
12
13 String name = desc.getName();
14 URLClassLoader ucl =
15 (URLClassLoader)Thread.currentThread()
16 .getContextClassLoader();
17
18 return Class.forName(name, false, u);
19 }
20 ...
21}

Figure 12. Psuedocode for the CustomObjectInputStream
Class

4.1.0. Each compute node has 2 GBytes of main memory. We used
MPICH2 version 1.2 as the C MPI library. For the parallel Java ver-
sion, we used the latest development version of MPJ Express and
MPJ/Ibis version 2.1 with the Sun Java Development Kit (JDK) 1.6
Update 12.

6.1 Ping Pong Benchmark for Basic Datatype
A ping pong benchmark is a reliable test for evaluating perfor-
mance of message passing communication libraries. This partic-
ular test measures performance of blocking point-to-point commu-
nication methods, which are widely used in parallel applications. In
this test, two parallel processes are started that repeatedly exchange
messages of increasing size. For our experiments, we vary message
size from 1 Byte to 8 Megabytes. At each particular data point, the
experiment is repeated for 10,000 iterations and the average value
is used for plotting results. Note that the two MPJ Express pro-
cesses (or MPI processes for other libraries) are started on the same
computational node of the cluster—we are interested in evaluating
intra-node message passing communication.

The following message passing libraries are used for this partic-
ular test:

• MPICH2 using the nemesis subsystem (for shared memory
communication),

• mpiJava using MPICH2,
• MPJ/Ibis,
• MPJ Express (cluster mode using niodev), and
• MPJ Express (multicore mode)

Figure 13 shows the transfer time comparison for message sizes
from 1 Byte to 2 Kilobytes. Figure 14 shows throughput graph for
message sizes from 4 Kilobytes to 8 Megabytes.

MPICH2 using nemesis shared memory communication achieves
the lowest latency of 0.4 µs (for 1 Byte message). It is followed
by mpiJava, which also has very low latency of 3 µs for 1 Byte
message. The MPJ Express (multicore mode) also performs well
outperforming MPJ Express (cluster mode) and MPJ/Ibis.

There are two curves representing MPJ Express in the multicore
mode. The one labeled “MPJ Express (multicore mode)” is using
MPJ Express buffering layer. The second labeled “MPJ Express
(multicore mode without buffering)” is not using the buffering
layer. The difference between the two curves depicts the packing
and unpacking overhead incurred by the MPJ buffering layer.

60

50

40

30

20

10

0
2K1K5122561286432168421

60

50

40

30

20

10

0

 T
im

e
(u

s)

 Message Length (Bytes)

mpiJava
MPJ Express (cluster mode)

MPJ Express (multicore mode)
MPJ Express (multicore mode without buffering)

MPJ/Ibis
MPICH2

Figure 13. Transfer Time Comparison

44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10

8
6
4
2
0

8M4M2M1M512K256K128K64K32K16K8K4K

44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0

 B
an

dw
id

th
 (G

bp
s)

 Message Length (Bytes)

mpiJava
MPJ Express (cluster mode)

MPJ Express (multicore mode)
MPJ Express (multicore mode without buffering)

MPJ/Ibis
MPICH2

Figure 14. Throughput Comparison

The throughput graph shown in the Figure 14 shows that MPJ
Express (multicore mode without buffering) performs the best.
This is understandable because communication between threads
is faster than all inter-process communication technologies. The
maximum throughput achieved by MPJ Express (multicore mode
without buffering) is 36.5 Gbps which is two times faster than
MPICH2, four times faster than mpiJava and five times faster
than MPJ/Ibis. MPJ Express (multicore mode)—that uses buffering
layer—performs well until the 512K message size. The maximum
throughput achieved in this configuration is 9.8 Gbps. But for mes-
sages larger than 512K the overhead of packing and unpacking
becomes overwhelming and hence its performance drops abruptly.
MPICH2 achieves a maximum throughput of 18.2 Gbps. The curve
of mpiJava is very similar to MPICH2. It also performs well up
to 32K message size and achieves throughput of 8.6 Gbps. After
that the JNI data copying becomes a bottleneck and the throughput
curve drops significantly. MPJ/Ibis is able to achieve the maximum
throughput of 7.5 Gbps. In the end we have MPJ Express (cluster
configuration) that achieves a maximum throughput of 2 Gbps.

The transfer time and throughput comparison results discussed
in this subsection clearly show that MPJ Express (multicore mode)
performs significantly better than MPJ Express (cluster mode).
Also the buffering layer of MPJ Express remains a potential source
of bottleneck in the cluster and the multicore configuration. This
buffering layer is inevitable for implementing derived datatypes.

56

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

1
1286432168421

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

1

Ti
m

e
(u

s)

Message Length (Indexed Datatype Element Count)

mpiJava
MPJ Express (cluster mode)

MPJ Express (multicore mode)

Figure 15. Transfer Time Comparison for Indexed Datatype

6.2 Indexed Datatype Benchmark
This subsection evaluates and compares the transfer time and
throughput for communicating derived datatypes.

There are two schools of thoughts in the context of communi-
cating non-contiguous data in Java messaging systems. The first
is that Java objects could be used for this purpose. The second is
that instead of Java objects, derived datatypes ought to be used.
Although the MPJ Express software fully supports communica-
tion of Java objects, we firmly believe that JDK’s default object
serialization and de-serialization is slow and, for this reason, detri-
mental to the performance of a parallel application. On the other
hand, MPJ/Ibis does not implement derived types—apart from
contiguous—because developers of this system advocate [3] us-
ing Java objects instead.

In this subsection, our experiment uses the indexed datatype
for performance evaluation. We will present results with MPJ
Express and mpiJava because MPJ/Ibis does not implemented
this particular datatype. The newly defined indexed datatype is
built with MPI.DOUBLE datatype elements and initialized using
block length array [8, 7, 6, 5, 4, 3, 2, 1] and displacements array
[0, 1, 2, 3, 4, 5, 6, 7]. This kind of data-structure might be used to
communicate upper triangles during matrix operations.

Figure 15 and Figure 16 present the transfer time and through-
put comparison of communicating our newly defined indexed
datatype—the count is varied from 1 to 262144. These graphs
show that MPJ Express (multicore mode) performs the best in
terms of transfer time for small messages. mpiJava also performs
reasonably well followed by MPJ Express (cluster mode). In terms
of throughput achieved by relatively larger messages, mpiJava and
MPJ Express (multicore mode) perform equally well. The overhead
associated with MPJ Express (both multicore and cluster mode) is
the additional packing and unpacking, which is inevitable for in-
dexed datatype. But an additional performance penalty appears
because our current implementation packs and unpacks individual
element in all blocks in a separate method call. Since our storage
medium is an instance of the ByteBuffer class, we can only use
putDouble(double element) for this purpose. An alternative
and efficient implementation would use bulk packing and unpack-
ing method for all blocks—currently the Java NIO API does not
support such an operation.

6.3 Java Gadget-2
Gadget-2 [16] is a free production code for cosmological N-body
and hydrodynamic simulations. The code is written in the C lan-
guage and parallelized using MPI. It simulates the evolution of
very large, cosmological-scale systems under the influence of grav-

700

600

500

400

300

200

100

0
256K128K64K32K16K8K4K2K1K512256

700

600

500

400

300

200

100

0

B
a

n
d

w
id

th
 (

M
b

p
s
)

Message Length (Indexed Datatype Element Count)

mpiJava
MPJ Express (cluster mode)

MPJ Express (multicore mode)

Figure 16. Throughput Comparison for Indexed Datatype

2500

2000

1500

1000

500
168421

2500

2000

1500

1000

500

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

 No of Processing Cores

Java Gadget-2 using MPJ Express (cluster mode)
Java Gadget-2 using MPJ Express (multicore mode)

Figure 17. Execution Time for the Colliding Galaxies Simulation
using Java Gadget-2 Application

itational and hydrodynamic forces. The universe is modeled by a
sufficiently large number of test particles, which may represent or-
dinary matter or dark matter. The main simulation loop increments
time steps and drifts particles to the next time step. This involves
calculating gravitational forces for each particle in the simulation
and updating their accelerations. Its parallelization strategy is based
on an irregular and dynamically adjusted domain decomposition,
with copious communication between processors.

In an earlier work [2], we developed a Java version of the
Gadget-2 code. In this subsection, we evaluate and compare perfor-
mance of this code for executing the colliding galaxies simulation
using MPJ Express in the cluster and the multicore modes. Our goal
is to quantify benefits of the MPJ Express multicore device using
a real-world scientific application on a shared memory/multicore
processor machine. The server used for this experiment contains
two Intel Xeon E5404 quad-core processors operating at a clock
speed of 2.0 GHz. Each CPU has two levels of cache: L1 and L2
having storage capacity of 64 Kilobyte (per core) and 6 Megabytes
(per processor). We used the latest development version of the MPJ
Express library.

Figure 17 shows the total execution time of the simulation on
2, 4, and 8 cores. As expected, the Java Gadget-2 code using MPJ
Express (multicore mode) performs better. The performance gain
appears modest because the communication cost is a small fraction
of the overall execution time. Nonetheless, this shows that the
multicore communication device helps MPJ Express achieve better
performance in real-world applications.

57

7. Conclusions and Future Work
In this paper, we presented a new low-level multicore communi-
cation device to port existing legacy parallel Java applications on
multicore and shared memory processors. The idea is that many
scientific applications already exist that are parallelized using MPJ
Express for distributed memory platforms like clusters. And in this
work we provide an effective and efficient way of executing the
same application—without any modification—on multicore and
shared memory processors.

The multicore device for the MPJ Express software has been
developed using Java threads. The device is recently integrated into
the public release of the MPJ Express software after essential mod-
ifications to the runtime system to ensure correct semantics of the
parallel program. The addition of the multicore device (and the
multicore mode) to the MPJ Express software enables application
developers to exploit the full potential of modern multicore ma-
chines.

Our performance evaluation reveals that MPJ Express (multi-
core mode) performs much better than MPJ Express (cluster mode)
and MPJ/Ibis on multicore and shared memory processors ma-
chines. Especially throughput achieved by the multicore mode MPJ
Express software is substantially higher than other competing li-
braries. The performance of the MPJ Express software still suffers
from the overhead of the buffering layer, which is inevitable for im-
plementing derived datatypes. We plan to explore in future if it is
possible to avoid this layer for communication of basic datatypes.
We also used MPJ Express (multicore mode) in a real-world simu-
lation code called Gadget-2 on an eight core machine and compared
its performance with MPJ Express (cluster mode). The multicore
mode of the MPJ Express software performed better demonstrating
effectiveness of our approach.

In the future, we plan to develop a hybrid MPJ Express device
that uses multicore device for intra-node communication and mes-
sage passing for inter-node communication—this kind of device
will allow porting MPJ Express applications on clusters of multi-
core and shared memory processors. Currently the multicore mode
can only be used on a single computer. We also plan to further im-
prove performance of MPJ Express communication devices.

A free copy of the MPJ Express software can be obtained from
http://mpj-express.org.

Acknowledgments
The authors would like to thank the British Council for a generous
grant to support this work under the PMI2Connect programme.

References
[1] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim. An Object-

Oriented Java interface to MPI. In Proceedings of the International
Workshop on Java for Parallel and Distributed Computing, San Juan,
Puerto Rico, April 1999.

[2] M. Baker, B. Carpenter, and A. Shafi. MPJ Express Meets Gadget:
Towards a Java Code for Cosmological Simulations. In Proceedings of
the 13th European PVM/MPI Users’ Group Meeting, Lecture Notes in
Computer Science, pages 358–365, Bonn, Germany, September 2006.
Springer.

[3] M. Bornemann, R. van Nieuwpoort, and T. Kielmann. MPJ/Ibis:
A Flexible and Efficient Message Passing Platform for Java. In
Proceedings of the 12th European PVM/MPI Users’ Group Meeting,
Lecture Notes in Computer Science, pages 217–224. Springer, 2005.

[4] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Benchmarking
Java against C and Fortran for scientific applications. In JGI ’01: Pro-
ceedings of the 2001 joint ACM-ISCOPE conference on Java Grande,
pages 97–105, New York, NY, USA, 2001. ACM. ISBN 1-58113-359-
6. doi: http://doi.acm.org/10.1145/376656.376823.

[5] B. Carpenter, G. Zhang, G. Fox, X. Li, and Y. Wen. HPJava: Data
Parallel Extensions to Java. Concurrency: Practice and Experience,
10(11-13):873–877, 1998.

[6] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim. mpiJava
1.2: API Specification. Technical report, Northeast Paral-
lel Architectures Center, Syracuse University, October 1999.
http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-
spec.html.

[7] G. Fox. Editorial: Java for Computational Science and Engineering -
Simulation and Modeling. Concurrency: Practice and Experience, 9
(6):413–414, June 1997.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-
tain, D. J. Daniel, R. L. Graham, and T. S. Woodall. OpenMPI: Goals,
Concept, and Design of a Next Generation MPI Implementation. In
Proceedings of the 11th European PVM/MPI Users’ Group Meeting,
Lecture Notes in Computer Science, pages 97–104, Budapest, Hun-
gary, September 2004. Springer.

[9] G.P.Nikishkov, Yu.G.Nikishkov, and V.V.Savchenko. Comparison of
C and Java Performance in Finite Element Computations. Computers
and Structures, 81(X):2401–2408, 2003.

[10] W. Gropp. MPICH2: A New Start for MPI Implementations. In
D. Kranzlmüller, P. Kacsuk, J. Dongarra, and J. Volkert, editors, Pro-
ceedings of the 9th European PVM/MPI Users’ Group Meeting, vol-
ume 2474 of Lecture Notes in Computer Science, page 7. Springer,
October 2002. ISBN 3-540-44296-0.

[11] Java Grande. The Java Grande Forum Home Page.
http://www.javagrande.org.

[12] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. University of Tenessee, Knoxville, TN, June 1995.
http://www.mcs.anl.gov/mpi.

[13] J. Moreira, S. Midkiff, and M. Gupta. From Flop to MegaFlops: Java
for Technical Computing. In Languages and Compilers for Paral-
lel Computing, volume 1656 of Lecture Notes in Computer Science.
Springer, 1998.

[14] A. Shafi and J. Manzoor. Towards Efficient Shared Mem-
ory Communications in MPJ Express. In IPDPS ’09: Pro-
ceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, pages 1–7, Washington, DC, USA,
2009. IEEE Computer Society. ISBN 978-1-4244-3751-1. doi:
http://dx.doi.org/10.1109/IPDPS.2009.5161083.

[15] A. Shafi, B. Carpenter, and M. Baker. Nested parallelism
for multi-core HPC systems using Java. J. Parallel Dis-
trib. Comput., 69(6):532–545, 2009. ISSN 0743-7315. doi:
http://dx.doi.org/10.1016/j.jpdc.2009.02.006.

[16] V. Springel. The cosmological simulation code GADGET-2. Monthly
Notices of the Royal Astronomical Society, 364:1105, 2005.

[17] H. Sutter and J. Larus. Software and the concurrency revo-
lution. Queue, 3(7):54–62, 2005. ISSN 1542-7730. doi:
http://doi.acm.org/10.1145/1095408.1095421.

[18] Top500. TOP500 Supercomputer Sites. http://www.top500.org.

58

