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Abstract

This paper presents and evaluates a parallel Java imple-
mentation of the Finite-Difference Time-Domain (FDTD)
method, which is a widely used numerical technique in
computational electrodynamics. The Java version is par-
allelized using MPJ Express—a thread-safe messaging li-
brary. MPJ Express provides a full implementation of the
mpiJava 1.2 API specification. This specification defines
a MPI-like binding for the Java language. This paper de-
scribes our experiences of implementing the Java version
of the FDTD method. Towards the end of this paper, we
evaluate and compare the performance of the Java version
against its C counterpart on a 32 processing core Linux
cluster of eight compute nodes.

1 Introduction

Soon after its release in 1996, Java became one of the
“mainstream” programming languages of the software in-
dustry. Various computer scientists have argued [3] that
Java could also make an excellent language for developing
scientific codes. To date this argument has not convinced
too many practising computational scientists. The scarcity
of high-profile number-crunching codes implemented in
Java does not help the case.

Perhaps a reason behind skepticism about Java for High
Performance Computing (HPC) is the fact that Java initially
executed as an interpreted language. The performance suf-
fered in this case because the Java Virtual Machine (JVM)
interpreted the bytecode generated by the Java compiler
(javac). An alternative and more efficient approach is

to generate and execute the native machine code as one
would with C or Fortran. The pre-requisite for this is to
convert the bytecode into the native machine code. This is
what Just-In-Time (JIT) compilers do. The JVM first con-
verts the bytecode into the native machine code and later
executes the native code. Currently, there are at least two
production-quality and free-to-download implementations
of the JVM—one from Sun and one from IBM. Both of
these JVMs are equipped with JIT compilers.

Compared with C or Fortran, the advantages of the Java
programming language include higher-level programming
concepts, improved compile time and runtime checking,
and, as a result, faster problem detection and debugging.
In addition, Java’s automatic garbage collection, when ex-
ploited carefully, relieves the programmer of many of the
pitfalls of lower-level languages. The Java language in-
cludes a large set of libraries that can be reused by appli-
cation developers for rapid application development. Code
type safety is yet another feature that helps a beginner to
avoid syntactic bugs in their code.

The most attractive feature of applications written in Java
is that they are portable to any hardware or operating sys-
tem, provided that there is a JVM for that system. The con-
tribution of the JVM is significant, keeping in mind that it
allows new programmers and scientists to focus on issues
related to their application and domain of interest, and not
on system heterogeneity.

In the context of “Java for HPC”, one of the authors was
involved in an effort [8] to develop a Java version of mas-
sively parallel cosmological simulation code Gadget-2 [9].
Versions of the C Gadget-2 code have been used in the “Mil-
lennium Simulation” [10], which is heralded as the largest
ever simulation of the Universe. It evolved 1010 dark mat-



ter particles from the early Universe to the current day. The
Java version was developed as an experiment to help un-
derstand where Java stands in comparison to C—an already
established HPC language. The performance evaluation of
the Java version revealed that it could achieve comparable
performance to the original C code.

In this paper, we implement a parallel version of the
Finite-Difference Time-Domain (FDTD) method in Java.
We used MPJ Express [2]—a thread-safe implementation of
Message Passing Interface (MPI) [6] bindings in Java—to
parallelize the implementation in Java. The FDTD method
is a widely used and increasingly popular method for the
study of electromagnetic wave propagation. The FDTD
method has been successfully applied to a broad range of
applications. These applications include antenna design,
radar and photonic crystals. In addition there are emerging
applications of the FDTD method in areas such as biopho-
tonics and nanophotonics [11].

We also compare the performance of the parallel Java
FDTD with its C counterpart, which was developed as part
of our earlier study [4]. The C code is already parallelized
using the MPI library. A goal of the performance compar-
ison between C and Java codes is to understand the rela-
tive performance in a popular scientific algorithm like the
FDTD.

Section 2 presents the FDTD algorithm. Section 3 dis-
cusses the design and implementation of MPJ Express. This
is followed by the parallel implementation of the FDTD
method in Section 4. Section 5 evaluates the performance
of the parallel Java FDTD code on a Linux cluster of eight
compute nodes. We conclude and discuss future work in
Section 6.

2 The Finite-Domain Time-Difference
(FDTD) Method

The numerical foundation of the FDTD method is the
discretization of Maxwell’s curl equations through the use
of central difference approximations to both the space
and time differentials. These discretizatons result in cou-
pled finite difference equations that govern the propaga-
tion of electric and magnetic fields on a discrete numeri-
cal grid. With appropriate boundary conditions these dif-
ference equations are then iterated on a computer in a time
and space marching sequence to study the propagation of
electromagnetic waves. The Maxwell’s curl equations for a
source less and homogeneous medium are:

∇× Ē = −µ
∂H̄

∂t
(1)

∇× H̄ = ε
∂Ē

∂t
(2)

Where ε is the electrical permittivity and µ is the mag-
netic permeability.

For 2D Transverse Magnetic (TM) waves the Maxwell
curl equations reduced to the following form:
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Where Ez is the electric field component in the z direc-
tion, and Hx and Hy are the magnetic field components in
the x and y directions, respectively. After discretizing equa-
tions (3)-(5) in both time and space, we obtain the following
discrete update equations for 2D TM waves [7]:
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Here m and n are the spatial indices while q is the tem-
poral index. ∆t is the size of the time step in the numeri-
cal FDTD grid and ∆x and ∆y are the sizes of the spatial
steps in the x and y directions, respectively. The electric



and magnetic fields evolve in time and space on a staggered
FDTD grid. If we study electromagnetic wave propagation
in a structure with a complex geometry we must make the
spatial grid finer to capture the fine detail of the structure.
However if we make the spatial steps smaller the Courant
stability criterion [11] says we must also make the time step
smaller. This results in a greatly increased simulation time.

∆t ≤ 1

c
√

1
∆x2 + 1

∆y2

(9)

Equation (9) is the Courant stability criterion for the two
dimensional FDTD method. Here c is the speed of light. If
the Courant stability condition is not satisfied the simulation
will rapidly blow up and generate incorrect results.

3 Overview of MPJ Express

Initial interest in using Java for HPC led to the formation
of the Java Grande Forum [5] that was a platform for HPC
community to voice their opinion about Java and how to im-
prove it. The Java Grande Forum was a group of leading re-
searchers from academia and industry that aimed to exploit
Java for Grande applications. The forum proposed various
improvements to Java for numerical computing—some of
these were introduced into the standard Java language. The
Message Passing Working Group of this forum defined Java
bindings for the MPI standard. The two commonly used
bindings, namely the MPI and mpiJava 1.2 APIs were pub-
lished by the Java Grande Forum.

MPJ Express is a new implementation of Java bindings
for the MPI standard. The system provides thread-safe com-
munication in a Java messaging system. It addresses po-
tentially contradictory issues of performance and portabil-
ity by supporting pluggable transport devices based either
on Java NIO (pure Java) or high performance interconnects
like Myrinet. Another implementation of the Java bindings
is the mpiJava [1] software. It uses JNI to interact with the
underlying native MPI library. The project started in 1997
at NPAC (Syracuse University), later moved to the Univer-
sity of Florida, and then Indiana University.

MPJ Express has a layered design that allows incremen-
tal development, and provides the capability to update and
swap layers in or out as needed. Figure 1 is a layered view
of the messaging system that shows MPJ Express levels:
high-level, base-level, mpjdev, and xdev.

Interested readers are refered to [2] for a detailed discus-
sion on the MPJ Express software. MPJ Express is avail-
able as an open source software under Lesser GNU Public
License (LGPL) from http://mpj-express.org.

The MPJ point to point communications (Base level) 

The MPJ collective Communications (High level) 

The MPJ Device (mpjdev) layer 

The MPJ API 

The OS and the hardware 

Native MPI 

mxdev niodev 

The xdev layer 

Pure Java mpjdev Native mpjdev 

Java NIO 

Java Virtual Machine (JVM) 

JNI 

JNI 

Figure 1. MPJ Express Design

4 Implementation of the FDTD Method

In this section we discuss the parallel implementation of
the FDTD method using MPJ Express.

The FDTD method is amenable to parallelization using
the message passing paradigm. The reason is that the up-
date of the field values on the FDTD computational grid are
dependant on the immediate neighboring field values.

In the parallel version, the domain decomposition
is achieved by dividing the computational grid equally
amongst the processors—this allows each processor to con-
currently execute its computational domain. For instance,
imagine a computational grid of sizex and sizey grid points
in x and y directions, respectively. In addition, if there are
P number of processes, then we can distribute the grid into
(sizex× sizey)/P sub-computational grid between P pro-
cesses equally.

While updating the boundary electric and magnetic field
data structures, each process requires field values from its
neighboring process. For this purpose, processes exchange
field values at the boundaries. This exchange of values can
be done by communicating the respective field values in a
point by point fashion. This kind of fine grain communica-
tion normally leads to an excessive communication cost. In
order to avoid this, the entire column of ghost values—the
required column on neighboring processor—is exchanged
between the processes leading to less communication cost.
In our implementation, the ghost values are communicated
using non-blocking point-to-point MPI functionality.

Figure 2 shows the pseudocode for MPI version of the



FDTD code.

4.1 Cavity Resonator Simulation using the Paral-
lel FDTD Method

In this section we describe the FDTD simulation used for
the comparison of Java and C parallel FDTD codes.

Our parallel codes are based on the sequential FDTD
code given in [7]. The simulation is of a Ricker Wavelet
propagating in free space surrounded by Perfectly Elec-
trically Conducting (PEC) walls, which reflect impinging
electromagnetic waves.

The computational problem domain consists of a 8192×
8192 grid. The source is a Ricker wavelet, which is a pulse-
like waveform. It is equal to the second derivative of a
Gaussian. Pulse-like sources are used in FDTD simulations
when it is desired to excite a structure with a broad range
of frequencies. The Ricker wavelet emerges from the mid-
dle of the computational grid and propagates towards the
walls of the cavity resonator. When it reaches the walls of
the grid, it is reflected back because of the Perfectly Elec-
trical Conducting (PEC) boundary conditions. As the simu-
lation proceeds, the Ricker wavelet is confined to propagate
within the resonator and we observe interference patterns
generated by the confined waves.

Figure 3 shows snapshots from the simulation of a cav-
ity resonator at three different times. In this case, the grid
size is 256 × 256. The snapshots are shown for Ez field
components. The entire simulation ran for 1000 time steps.

5 Performance Evaluation

In this section we report evaluation results of the Java
and C MPI codes.

We begin by describing our test environment, which con-
sisted of a 32 processing core Linux cluster at our institute.
The cluster consists of eight compute nodes. Each node
contains a quad-core Intel XEON processor. The nodes are
connected via Myrinet and Fast Ethernet and we configured
the OpenMPI runtime to use Myrinet for communication.
The compute nodes run the SuSE Linux Enterprise Server
(SLES) 10 Operating System and GNU C Compiler (GCC)
version 4.1.0. Each compute node has 2 GBytes of main
memory. We used OpenMPI version 1.2.4 as the C MPI
library. For the parallel Java version, we used the latest de-
velopment version of MPJ Express with the Sun Java De-
velopment Kit (JDK) 1.6 Update 4.

Figure 4 presents the performance comparison of the
Java and C versions. Both Java and C versions of the FDTD
method almost achieve similar performance. Also the two
versions roughly scale in a similar fashion. The C code
was executed with the GCC compiler version 4.1.0 and op-
timization switch −03 was specified.

Hx, the magnetic field component along x axis
Hy, the magnetic field component along y axis
Ez, the electric field component
rank, process rank in the world communicator
size, total number of processes

initialize field components

for initial time:maxtime {

if(rank != 0) {
Asynchronously send Ez edge column to

process rank-1
} else if(rank != size-1) {
Asychronously receive Ez edge column

from process rank+1
}

for (i=1 to imax) {
for (j=1 to jmax) {
Hx(i,j) = Hx(i,j) -

(Ez(i,j+1) - Ez(i,j))
}

}

Wait for the Ez edge column communication
to complete

for (i=1 to imax) {
for(j=1 to jmax) {
Hy(i,j) = Hy(i,j) +

(Ez(i+1,j) - Ez(i,j))
}

}

if(rank != size-1) {
Synchronously send Hy edge column to

process rank+1
} else if(rank !=0) {
Synchronously receive Hy edge column from

process rank-1
}

for(i=1 to imax) {
for(j=1 to jmax) {
Ez(i,j) = Ez(i,j) +

(Hy(i,j) - Hy(i-1,j) -
(Hx(i,j) - Hx(i,j-1))

}
}

}

Figure 2. Pseudocode for the parallel FDTD
method



Figure 3. Snapshots Taken from the Simula-
tion at Different Times
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Figure 4. Java and C FDTD Codes Compari-
son
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Figure 5. Profiling Information for the C FDTD
Code
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Figure 6. Profiling Information for the Java
FDTD Code

To understand the comparative performance of the two
versions of the FDTD code, we plotted the profiling infor-
mation in Figure 5 and 6. Figure 5 plots the profiling in-
formation for the C FDTD code; here 5a, 5b, 5c, and 5d
corresponds to execution results with 4, 8, 16, and 32 MPI
processes. For all cases, the graph shows the time each
process spent in various stages of the FDTD computation.
These stages include Hx computation, Hy computation, Ez

computation, Hy communication, and Ez communication.
Similarly Figure 6 plots profiling information for the paral-
lel Java FDTD code; here 6a, 6b, 6c, and 6d corresponds
to execution results with 4, 8, 16, and 32 MPJ Express pro-
cesses.

The profiling information in Figures 5 and 6 show that
the Java code performs better in the computation stages.
Modern JVMs are equipped with JIT compilers, which first
convert the Java bytecode to native machine code. Also
we observe that with 32 MPI processes, the communication
cost for exchanging edge columns for Hy and Ez compu-
tation are higher for the Java code. This is understandable
because of higher latency of the MPJ Express Myrinet de-
vice than its OpenMPI counterpart.

6 Conclusions and Future Work

This paper presented a parallel version of the FDTD al-
gorithm for computational electrodynamics. An aim of this
paper was to assess performance concerns of using Java in
a real-world scientific algorithm. In this context, we pro-



duced a parallel Java version and studied its performance
on our Linux cluster of eight compute nodes. We found that
the Java and C versions scale in a similar fashion. Also the
Java code achieves similar performance as the C code.

The performance shown by the parallel Java FDTD code
shows that Java is a viable option for developing scientific
applications. In general, Java encourages good software en-
gineering by being an object-oriented language that is more
portable than its precursors.

Currently MPJ Express, our implementation of
Java bindings, provides communication devices using
Java NIO and Myrinet. We have plans to develop
drivers for Infiniband, Quadrics, and shared memory
platforms. MPJ Express can be downloaded from
http://mpj-express.org.
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